[1] BOYLE CA, BOULET S, SCHIEVE LA, et al. Trends in the Prevalence of Developmental Disabilities in US Children, 1997-2008[J]. Pediatrics, 2011, 127(6): 1034. doi: 10.1542/peds.2010-2989
[2] MOESCHLER JB, SHEVELL M. Comprehensive Evaluation of the Child With Intellectual Disability or Global Developmental Delays[J]. Pediatrics, 2014, 134(3): e903. doi: 10.1542/peds.2014-1839
[3] 刘欣, 刘宏景, 王丽, 等. 染色体芯片分析对神经发育性疾病的分子诊断率研究[J]. 中华检验医学杂志, 2016, 39(4): 246. doi: 10.3760/cma.j.issn.1009-9158.2016.04.004
[4] 彭镜, 尹飞. 重视儿童神经发育障碍性疾病的病因及临床研究[J]. 中国医师杂志, 2018, 20(9): 1281. doi: 10.3760/cma.j.issn.1008-1372.2018.09.001
[5] 中华医学会儿科学分会神经学组, 中国医师协会神经内科分会儿童神经疾病专业委员会. 儿童智力障碍或全面发育迟缓病因诊断策略专家共识[J]. 中华儿科杂志, 2018, 56(11): 806. doi: 10.3760/cma.j.issn.0578-1310.2018.11.003
[6] 耿娟, 余永国, 傅启华. 儿童神经发育性疾病分子诊断技术应用进展[J]. 中华检验医学杂志, 2018(2): 81. doi: 10.3760/cma.j.issn.1009-9158.2018.02.001
[7] 胡婷, 王嘉敏, 张竹, 等. 染色体微阵列分析技术在超声异常胎儿产前诊断中的应用[J]. 中华医学遗传学杂志, 2017, 34(3): 317. doi: 10.3760/cma.j.issn.1003-9406.2017.03.001
[8] BEAUDET LA. The utility of chromosomal microarray analysis in developmental and behavioral pediatrics[J]. Child Development, 2013, 84(1): 121. doi: 10.1111/cdev.12050
[9] SYRMOU A, TZETIS M, FRYSSIRA H, et al. Array comparative genomic hybridization as a clinical diagnostic tool in syndromic and nonsyndromic congenital heart disease[J]. Pediatr Res, 2013, 73(6): 772. doi: 10.1038/pr.2013.41
[10] MILLER DT, ADAM MP, ARADHYA S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies[J]. Am J Human Genet, 2010, 86(5): 749. doi: 10.1016/j.ajhg.2010.04.006
[11] 王艳, 胡平, 林颖, 等. SNP array技术检测自闭症患儿的拷贝数变异[J]. 临床检验杂志, 2015, 33(12): 10.
[12] KIM YM, CHO EH, KIM JM, et al. Del(18p) syndrome with increased nuchal translucency in prenatal diagnosis[J]. Prenat Diagn, 2004, 24(3): 161. doi: 10.1002/pd.741
[13] GIJSBERS AC, LEW JY, BOSCH CA, et al. A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first[J]. Eur J Human Genet, 2009, 17(11): 1394. doi: 10.1038/ejhg.2009.74
[14] YOUNG RL, RODI ML. Redefining autism spectrum disorder using DSM-5: the implications of the proposed DSM-5 criteria for autism spectrum disorders[J]. J Autism Dev Disord, 2014, 44(4): 758. doi: 10.1007/s10803-013-1927-3
[15] ELSABBAGH M, DIVAN G, KOH YJ, et al. Global prevalence of autism and other pervasive developmental disorders[J]. Autism Res, 2012, 5(3): 160. doi: 10.1002/aur.239
[16] DE LIGT J, WILLEMSEN MH, VAN BON BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability[J]. N Engl J Med, 2012, 367(20): 1921. doi: 10.1056/NEJMoa1206524
[17] MUSANTE L, ROPERS HH. Genetics of recessive cognitive disorders[J]. Trends Genet, 2013, 30(1): 32.
[18] XU M, JI Y, ZHANG T, et al. Clinical application of chromosome microarray analysis in han Chinese children with neurodevelopmental disorders[J]. Neurosci Bull, 2018(6): 981.
[19] WU X, YIN J, SIMPSON J, et al. Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants[J]. Mol Cell Biol, 2012, 32(19): 3872. doi: 10.1128/MCB.00751-12
[20] SACHAROW S, LI D, FAN YS, et al. Familial 16q24.3 microdeletion involving ANKRD11 causes a KBG-like syndrome[J]. Am J Med Genet Part A, 2012, 158A(3): 547. doi: 10.1002/ajmg.a.34436
[21] GONG X, JIANG YW, ZHANG X, et al. High proportion of 22q13 deletions and SHANK3 mutations in chinese patients with intellectual disability[J]. PLoS One, 2012, 7(4): e34739. doi: 10.1371/journal.pone.0034739
[22] LUBS HA, STEVENSON RE, SCHWARTZ CE. Fragile X and X-linked intellectual disability: four decades of discovery[J]. Am J Human Genet, 2012, 90(4): 579. doi: 10.1016/j.ajhg.2012.02.018
[23] CAMPBELL CL, COLLINS RT, ZARATE YA. Severe neonatal presentation of Kleefstra syndrome in a patient with hypoplastic left heart syndrome and 9q34.3 microdeletion[J]. Birth Defects Res Part A Clin Mol Teratol, 2014, 100(12): 985. doi: 10.1002/bdra.23324
[24] MA J, CRAM DS, ZHANG J. Birth of a child with trisomy 9 mosaicism syndrome associated with paternal isodisomy 9: case of a positive noninvasive prenatal test result unconfirmed by invasive prenatal diagnosis[J]. Mol Cytogenet, 2015, 8: 44. doi: 10.1186/s13039-015-0145-4
[25] 周晓燕, 胡平, 杨吟秋, 等. 微阵列比较基因组杂交技术诊断9p部分三体患儿一例[J]. 中华医学遗传学杂志, 2012, 29(1): 52. doi: 10.3760/cma.j.issn.1003-9406.2012.01.013
[26] SAHIN M, SUR M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders[J]. Science, 2015, 350(6263): 10.
[27] TORDJMAN S, SOMOGYI E, COULON N, et al. Gene X Environment interactions in autism spectrum disorders: role of epigenetic mechanisms[J]. Front Psychiatry, 2014, 5: 53.
[28] 静进. 儿童孤独症谱系障碍研究进展及其诊断治疗[J]. 中华实用儿科临床杂志, 2010(23): 19.
[29] YANG P, LUNG FW, JONG YJ, et al. Association of the homeobox tran scritption factor gene ENGRAILED 2 with autistic disorder in Chinese children[J]. Neuropsychobiology, 2008, 57(1/2): 3.
[30] DUERINCKX S, MEUWISSEN M, PERAZZOLO C, et al. Phenotypes in siblings with homozygous mutations of TRAPPC9 and/or MCPH1 support a bifunctional model of MCPH1[J]. Mol Genet Genomic Med, 2018, 6(4): 660. doi: 10.1002/mgg3.400
[31] LOW KJ, ANSARI M, JAMRA RA, et al. PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features[J]. Eur J Human Genet, 2017, 25(5): 552. doi: 10.1038/ejhg.2017.27
[32] CHEHADEH SE, KERSTJENS-FREDERIKSE WS, THEVENON J, et al. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature[J]. Eur J Human Genet, 2016, 25(1): 43.