[1] 张云辉, 王廷华. 脑源性神经营养因子与脑缺血肺水肿[J]. 四川大学学报(医学版), 2012, 43(6): 893.
[2] LIU E, SUN L, ZHANG Y, et al. Aquaporin4 knockout aggravates early brain injury following subarachnoid hemorrhage through impairment of the glymphatic system in rat brain[J]. Acta neurochirurgica Supplement, 2020, 127: 59.
[3] GU H, FEI ZH, WANG YQ, et al. Angiopoietin-1 and angiopoiein-2 expression imbalance influence in early period after subarachnoid hemorrhage[J]. Int Neurourol J, 2016, 20(4): 288. doi: 10.5213/inj.1632692.346
[4] GÜRER B, KERTMEN H, KURU BEKTAŞOǦLU P, et al. The effects of cinnamaldehyde on early brain injury and cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits[J]. Metab Brain Dis, 2019, 34(6): 1737. doi: 10.1007/s11011-019-00480-7
[5] ZHANG H, ZHANG B, LI S, et al. Whole brain CT perfusion combined with CT angiography in patients with subarachnoid hemorrhage and cerebral vasospasm[J]. Clin Neurol Neurosurg, 2013, 115(12): 2496. doi: 10.1016/j.clineuro.2013.10.004
[6] VAIDYA T, AGRAWAL A, MAHAJAN S, et al. The continuing evolution of molecular functional imaging in clinical oncology: The road to precision medicine and radiogenomics(Part Ⅰ)[J]. Mol Diagn Ther, 2019, 23(1): 1. doi: 10.1007/s40291-018-0366-4
[7] OEBEL S, HAMADA S, HIGASHIGAITO K, et al. Comprehensive morphologic and functional imaging of heart transplant patients: first experience with dynamic perfusion CT[J]. Eur Radiol, 2018, 28(10): 4111. doi: 10.1007/s00330-018-5436-9
[8] QIN L, LI S, ZHENG RB, et al. Endothelin-1 expression and alterations of cerebral microcirculation after experimental subarachnoid hemorrhage[J]. Neuroradiology, 2015, 57(1): 63. doi: 10.1007/s00234-014-1435-y
[9] MALINOVA V, ILIEV B, TSOGKAS I, et al. Assessment of tissue permeability by early CT perfusion as a surrogate parameter for early brain injury after subarachnoid hemorrhage[J]. J Neurosurg, 2019, 23: 1.
[10] CHAI WN, SUN XC, LV FJ, et al. Clinical study of changes of cerebral microcirculation in cerebral vasospasm after SAH[J]. Acta Neurochir Suppl, 2011, 110(1): 225.
[11] WANG Z, SHI XY, YIN J, et al. Role of autophary in early brain injury after experimental subarachnoid hemorrhage[J]. J Mol Neurosci, 2011, 28(6): 252.
[12] OKADA T, ENKHJARGAL B, TRAVIS ZD, et al. FGF-2 attenuates neuronal apoptosis via FGFR3/PI3k/Akt signaling pathway after subarachnoid hemorrhage[J]. Mol Neurobiol, 2019, 56(12): 8203. doi: 10.1007/s12035-019-01668-9
[13] ZHOU N, XU T, BAI Y, et al. Protective effects of urinary trypsin inhibitor on vascular permeability following subarachnoid hemorrhage in a rat model[J]. CNS Neurosci Ther, 2013, 19(9): 659. doi: 10.1111/cns.12122
[14] ZHENG RB, QIN L, LI SB, et al. CT perfusion-derived mean transit time of cortical brain has a negative correlation with the plasma level of Nitric Oxide after subarachnoid hemorrhage[J]. Acta Neurochir, 2014, 156(3): 527. doi: 10.1007/s00701-013-1968-6
[15] KIM H, BRITTON GL, PENG T, et al. Nitric oxide-loaded echogenic liposomes for treatment of vasospasm following subarachnoid hemorrhage[J]. Int J Nanomedicine, 2014, 9: 155.
[16] ZHAO D, LIU Q, JI Y, et al. Correlation between nitric oxide and early brain injury after subarachnoid hemorrhage[J]. Int J Neurosci, 2015, 37(6): 476.
[17] WU Q, ZHENG R, WANG J, et al. CT perfusion imaging of cerebral microcirculatory changes following subarachnoid hemorrhage in rabbits: Specific role of endothelin-1 receptor antagonist[J]. Brain Res, 2018, 12: 1701.
[18] LI HT, WANG J, LI SF, et al. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase[J]. Mol Med Rep, 2018, 18(1): 1181.
[19] SUN J, ZHANG Y, LU J, et al. Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage[J]. Microcirculation, 2018, 25(3): e12442. doi: 10.1111/micc.12442