[1] WEI B, WANG W, LIU X, et al. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration[J]. Regen Biomater, 2021, 8(5): rbab044. doi: 10.1093/rb/rbab044
[2] RANMUTHU CDS, RANMUTHU CKI, RUSSELL JC, et al. Evaluating the effect of non-cellular bioactive glass-containing scaffolds on osteogenesis and angiogenesis in in vivo animal bone defect models[J]. Front Bioeng Biotechnol, 2020, 8: 430. doi: 10.3389/fbioe.2020.00430
[3] ROTHRAUFF BB, TUAN RS. Decellularized bone extracellular matrix in skeletal tissue engineering[J]. Biochem Soc Trans, 2020, 48(3): 755. doi: 10.1042/BST20190079
[4] ORYAN A, ALIDADI S, BIGHAM-SADEGH A, et al. Healing potentials of polymethylmethacrylate bone cement combined with platelet gel in the critical-sized radial bone defect of rats[J]. PLoS One, 2018, 13(4): e0194751. doi: 10.1371/journal.pone.0194751
[5] DONG Z, YUAN Q, HUANG K, et al. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration[J]. RSC Adv, 2019, 9(31): 17737. doi: 10.1039/C9RA02695A
[6] SUN X, MA Z, ZHAO X, et al. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus[J]. Bioact Mater, 2020, 6(3): 757.
[7] JING X, XU C, SU W, et al. Photosensitive and conductive hydrogel induced innerved bone regeneration for infected bone defect repair[J]. Adv Healthc Mater, 2023, 12(3): e2201349. doi: 10.1002/adhm.202201349
[8] LI R, ZHOU C, CHEN J, et al. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration[J]. Bioact Mater, 2022, 18: 267. doi: 10.1016/j.bioactmat.2022.02.011
[9] SUN H, XU J, WANG Y, et al. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair[J]. Bioact Mater, 2023, 24: 477. doi: 10.1016/j.bioactmat.2022.12.021
[10] XU Y, XU C, HE L, et al. Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration[J]. Bioact Mater, 2022, 16: 271. doi: 10.1016/j.bioactmat.2022.02.024
[11] ZENG Y, HUANG C, DUAN D, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect[J]. Acta Biomater, 2022, 153: 108. doi: 10.1016/j.actbio.2022.09.018
[12] MATICHESCU A, ARDELEAN LC, RUSU LC, et al. Advanced biomaterials and techniques for oral tissue engineering and regeneration-a review[J]. Materials (Basel), 2020, 13(22): 5303. doi: 10.3390/ma13225303
[13] LAVANYA K, CHANDRAN SV, BALAGANGADHARAN K, et al. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110862. doi: 10.1016/j.msec.2020.110862
[14] 陈笑天, 宋宜宁, 王颖, 等. 二甲双胍改善佐剂性关节炎大鼠骨破坏的作用和机制研究[J]. 蚌埠医学院学报, 2021, 46(6): 701. doi: 10.13898/j.cnki.issn.1000-2200.2021.06.001
[15] HAO Z, REN L, ZHANG Z, et al. A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis[J]. Bioact Mater, 2022, 23: 206.
[16] WU M, CHEN F, LIU H, et al. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration[J]. Mater Today Bio, 2022, 17: 100458. doi: 10.1016/j.mtbio.2022.100458
[17] LU W, ZENG M, LIU W, et al. Human urine-derived stem cell exosomes delivered via injectable GelMA templated hydrogel accelerate bone regeneration[J]. Mater Today Bio, 2023, 19: 100569. doi: 10.1016/j.mtbio.2023.100569
[18] JIAN G, LI D, YING Q, et al. Dual photo-enhanced interpenetrating network hydrogel with biophysical and biochemical signals for infected bone defect healing[J]. Adv Healthc Mater, 2023, 18: e2300469.
[19] MATHIEU M, RIGUTTO S, INGELS A, et al. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures[J]. Bone, 2013, 53(2): 391. doi: 10.1016/j.bone.2013.01.005
[20] 李晨晨, 吴亚星, 刘翠翠, 等. 炎症微环境下骨髓间充质干细胞上清液内细胞因子表达及其对成骨分化的影响[J]. 蚌埠医学院学报, 2022, 47(6), 707.
[21] ALDHAHER A, SHAHABIPOUR F, SHAITO A, et al. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities[J]. Heliyon, 2023, 9(7): e17050. doi: 10.1016/j.heliyon.2023.e17050
[22] HUANG K, GU Z, WU J. Tofu-incorporated hydrogels for potential bone regeneration[J]. ACS Biomater Sci Eng, 2020, 6(5): 3037. doi: 10.1021/acsbiomaterials.9b01997
[23] NICHOL JW, KOSHY ST, BAE H, et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials, 2010, 31(21): 5536. doi: 10.1016/j.biomaterials.2010.03.064
[24] CHAI LJ, ZHANG Y, ZHANG PY, et al. The antiosteoporosis effects of zhuanggu guanjie pill in vitro and in vivo[J]. Biomed Res Int, 2018, 2018: 9075318.