[1] 王大鹏, 杨晓光, 赵磊, 等. 基于CT的影像组学分析在鉴别肺鳞癌与肺腺癌中的应用[J]. 临床放射学杂志, 2019, 38(11): 2055.
[2] 吴琪燕, 边革元, 程绘珺, 等. 肺腺癌预后因素及血清肿瘤标记物的诊断效能[J]. 昆明医科大学学报, 2020, 41(9): 32.
[3] CARRETTA A, BANDIERA A, MURIANA P, et al. Prognostic role of positron emission tomography and computed tomography parameters in stage Ⅰ lung adenocarcinoma[J]. Radiol Oncol, 2020, 54(3): 278. doi: 10.2478/raon-2020-0034
[4] 王锐, 马彩玲, 胡久丽, 等. 肺腺癌CT表现与病理分级的相关性研究[J]. 影像科学与光化学, 2022, 40(2): 306.
[5] 张莹, 傅奕铖, 余烨, 等. 基于2011及2020年版病理分级系统双层探测器光谱CT评估实性肺腺癌病理分级的价值[J]. 中华放射学杂志, 2022, 56(6): 623.
[6] 李健维, 杨昭, 王小雷, 等. CT影像组学联合临床特征在预测肺腺癌EGFR突变中的价值[J]. 蚌埠医学院学报, 2021, 46(8): 1103.
[7] DONG H, YIN L, CHEN L, et al. Establishment and validation of a radiological-radiomics model for predicting high-grade patterns of lung adenocarcinoma less than or equal to 3 cm[J]. Front Oncol, 2022, 12: 964322.
[8] CHEN X, FANG M, DONG D, et al. A radiomics signature in preoperative predicting degree of tumor differentiation in patients with non-small cell lung cancer[J]. Acad Radiol, 2018, 25(12): 1548.
[9] NASIM F, SABATH BF, EAPEN GA. Lung cancer[J]. Med Clin North Am, 2019, 103(3): 463.
[10] JONNA S, SUBRAMANIAM DS. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): an update[J]. Discov Med, 2019, 27(148): 167.
[11] BENSON JC, RAJENDRAN K, LANE JI, et al. A new frontier in temporal bone imaging: photon-counting detector CT demonstrates superior visualization of critical anatomic structures at reduced radiation dose[J]. AJNR Am J Neuroradiol, 2022, 43(4): 579.
[12] YASUKAWA M, OHBAYASHI C, KAWAGUCHI T, et al. Analysis of histological grade in resected lung-invasive adenocarcinoma[J]. Anticancer Res, 2019, 39(3): 1491.
[13] NICHOLSON AG, CHANSKY K, CROWLEY J, et al. The international association for the study of lung cancer lung cancer staging project: proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2016, 11(3): 300.
[14] ASAMURA H, CHANSKY K, CROWLEY J, et al. The international association for the study of lung cancer lung cancer staging project: proposals for the revision of the N descriptors in the forthcoming 8th edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2015, 10(12): 1675.
[15] DAVNALL F, YIP CS, LJUNGQVIST G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?[J]. Insights Imaging, 2012, 3(6): 573.
[16] 傅圆圆, 侯润萍, 傅小龙. 基于胸部CT预测早期非小细胞肺癌淋巴道或血道转移风险的研究进展[J]. 中国癌症杂志, 2022, 32(4): 343.
[17] 杨玉玲, 谭明瑜, 马伟玲, 等. 基于CT的三维影像组学在预测肺腺癌病理分化程度的价值[J]. 临床放射学杂志, 2021, 40(12): 2297.
[18] 陈欢, 梁明柱, 雷益, 等. 含瘤周移行带影像组学模型预测肺腺癌病理分级[J]. 放射学实践, 2020, 35(4): 478.
[19] 尹娣, 陈国丹, 盛玉瑞, 等. 常规MRI联合扩散峰度成像的影像组学模型对脑胶质瘤分级的预测[J]. 中国中西医结合影像学杂志, 2022, 20(2): 117.
[20] LU L, EHMKE RC, SCHWARTZ LH, et al. Assessing agreement between radiomic features computed for multiple CT imaging settings[J]. PLoS One, 2016, 11(12): e0166550.
[21] 崔效楠, 刘颖, 叶兆祥, 等. 影像组学特征对肺纯磨玻璃结节侵袭性腺癌与非侵袭性腺癌的鉴别价值[J]. 国际医学放射学杂志, 2018, 41(4): 375.
[22] 单文莉, 柏根基, 孔丹, 等. 基于常规CT图像应用影像组学模型预测浸润性肺腺癌不同分化程度的价值[J]. 临床放射学杂志, 2020, 39(6): 1095.