[1] LIS P, DYLAG M, NIEDZWIECKA K, et al.The HK2 dependent "warburg effect" and mitochondrial oxidative phosphorylation in cancer:targets for effective therapy with 3-Bromopyruvate[J].Molecules, 2016, 21(12):1729. doi: 10.3390/molecules21121729
[2] GONG L, WEI Y, YU X, et al.3-Bromopyruvic acid, a hexokinase Ⅱ inhibitor, is an effective antitumor agent on the hepatoma cells:in vitro and in vivo findings.[J].Anticancer Agents Med Chem, 2014, 14(5):771. doi: 10.2174/1871520614666140416105309
[3] KO YH, SMITH BL, WANG Y, et al.Advanced cancers:eradication in all cases using 3-bromopyruvate therapy to deplete ATP[J].Biochem Biophys Res Commun, 2004, 324(1):269.
[4] KAPP N, STANDER XX, STANDER BA.Synergistic in-vitro effects of combining an antiglycolytic, 3-bromopyruvate, and a bromodomain-4 inhibitor on U937 myeloid leukemia cells[J].Anti Cancer Drugs, 2018, 29(5):429. doi: 10.1097/CAD.0000000000000613
[5] AZEVEDO-SILVA J, QUEIROS O, BALTAZAR F, et al.The anticancer agent 3-bromopyruvate:a simple but powerful molecule taken from the lab to the bedside[J].J Bioenerg Biomembr, 2016, 48(4):349. doi: 10.1007/s10863-016-9670-z
[6] FAN T, SUN G, SUN X, et al.Tumor energy metabolism and potential of 3-Bromopyruvate as an inhibitor of aerobic glycolysis:implications in tumor treatment[J].Cancers, 2019, 11(3):1.
[7] YADAV S, KUJUR PK, PANDEY SK, et al.Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death[J].Toxicol Appl Pharmacol, 2018, 339:52. doi: 10.1016/j.taap.2017.12.004
[8] DARABEDIAN N, CHEN TC, MOLINA H, et al.Bioorthogonal profiling of a cancer cell proteome identifies a large set of 3-Bromopyruvate targets beyond glycolysis[J].ACS Chem Biol, 2018, 13(11):3054. doi: 10.1021/acschembio.8b00743
[9] CHEN T C, YU J, NOURI NIGJEH E, et al.A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells[J].Cancer Lett, 2017, 3835(17):30275.
[10] GANDHAM S K, TALEKAR M, SINGH A, et al.Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis[J].Intern J Nanomed, 2015, 10:4405.
[11] ZHANG Y, WEI J, XU J, et al.Suppression of tumor energy supply by liposomal nanoparticle-mediated inhibition of aerobic glycolysis[J].ACS Appl Mater Interf, 2018, 10(3):2347. doi: 10.1021/acsami.7b16685
[12] SEAN MARRACHEA, DHAR S.The energy blocker inside the power house mitochondria target delivery of 3BrPA[J].Chem Sci, 2015, 6:1832. doi: 10.1039/C4SC01963F
[13] CHAPIRO J, SUR S, SAVIC LJ, et al.Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer[J].Clin Cancer Res, 2014, 20(24):6406. doi: 10.1158/1078-0432.CCR-14-1271
[14] HANAFY N A, DINI L, CITTI C, et al.Inihibition of glycolysis by using a micro/nano-lipid bromopyruvic chitosan carrier as a promising tool to improve treatment of hepatocellular carcinoma[J].Nanomaterials, 2018, 8(1):34. doi: 10.3390/nano8010034
[15] YAGHMUR A, GLATTER O.Characterization and potential applications of nanostructured aqueous dispersions[J].Adv Coil Inter-face Sei, 2009, 147/148:333. doi: 10.1016/j.cis.2008.07.007
[16] LI Q, CAO J, LI Z, et al.Cubic liquid crystalline gels based on glycerol monooleate for intra-articular injection[J].AAPS Pharm Sci Tech, 2018, 19(2):858. doi: 10.1208/s12249-017-0894-y
[17] MATLOUB AA, ABOUSAMRA MM, SALAMA AH, et al.Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity[J].Saudi Pharm J, 2018, 26(2):224. doi: 10.1016/j.jsps.2017.12.007
[18] CHOUNTOULESI M, PIPPA N, PISPAS S, et al.Cubic lyotropic liquid crystals as drug delivery carriers:Physicochemical and morphological studies[J].Intern J Pharm, 2018, 550(1/2):57.
[19] AZMI ID, MOGHIMI SM, YAGHMUR A.Cubosomes and hexosomes as versatile platforms for drug delivery[J].Ther Deliv, 2015, 6(12):1347. doi: 10.4155/tde.15.81
[20] MADHESWARAN T, KANDASAMY M, BOSE RJ, et al.Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems[J].Drug Discov Today, 2019, 24(7):1405. doi: 10.1016/j.drudis.2019.05.004
[21] LANCELOT A, SIERRA T, JL S.Nanostructured liquid-crystalline particles for drug delivery.[J].Expert Opin Drug Deliv, 2014, 11(4):547. doi: 10.1517/17425247.2014.884556
[22] MULET X, BOYD BJ, DRUMMOND CJ.Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions[J].J Colloid Interf Sci, 2013, 393:1. doi: 10.1016/j.jcis.2012.10.014
[23] BADIE H, ABBAS H.Novel small self-assembled resveratrol-bearing cubosomes and hexosomes:preparation, charachterization, and ex vivo permeation[J].Drug Dev Ind Pharm, 2018, 44(12):2013. doi: 10.1080/03639045.2018.1508220
[24] ZHAI J, TRAN N, SARKAR S, et al.Self-assembled lyotropic liquid crystalline phase behavior of monoolein-capric acid-phospholipid nanoparticulate systems[J].ACS J Surface Colloid, 2017, 33(10):2571. doi: 10.1021/acs.langmuir.6b04045
[25] LOUREIRO A, NORO J, ABREU AS, et al.Absence of albumin improves in vitro cellular uptake and disruption of poloxamer 407-based nanoparticles inside cancer cells[J].Mol Pharm, 2018, 15(2):527. doi: 10.1021/acs.molpharmaceut.7b00893