[1] AGGARWAL H, NAIR J, SHARMA P, et al. Aegle marmelos differentially affects hepatic markers of glycolysis, insulin signalling pathway, hypoxia, and inflammation in HepG2 cells grown in fructose versus glucose-rich environment[J]. Mol Cell Biochem, 2018, 438(1/2): 1.
[2] 陈惠丽, 马平, 陈艳丽, 等. 二甲双胍对K562细胞增殖、凋亡及糖酵解的影响[J]. 中国实验血液学杂志, 2019, 27(5): 1387.
[3] HUA S, LEI L, DENG L, et al. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1[J]. Oncogene, 2018, 37(12): 1624. doi: 10.1038/s41388-017-0057-3
[4] 沈花, 常怡, 陆薇, 等. Lewis肺癌细胞培养上清液通过调控糖酵解途径增强小鼠髓源性抑制细胞的免疫抑制功能[J]. 细胞与分子免疫学杂志, 2019, 35(6): 491.
[5] 熊璟, 何元春, 刘杰, 等. 白藜芦醇通过调控雷帕霉素靶蛋白/M2型丙酮酸激酶轴抑制口腔鳞状细胞癌细胞的糖酵解作用[J]. 口腔医学研究, 2019, 35(6): 573.
[6] KUANG Y, HAN X, XU M, et al. Oxaloacetate induces apoptosis in HepG2 cells via inhibition of glycolysis[J]. Cancer Med, 2018, 7(4): 1416. doi: 10.1002/cam4.1410
[7] 郝杰, 陈建芳, 李甫, 等. 果糖-1, 6-二磷酸酶1抑制结肠癌SW480细胞的侵袭以及有氧糖酵解[J]. 第三军医大学学报, 2019, 41(9): 823.
[8] 段艺菲, 赵清喜, 荆雪. 长链非编码RNA对原发性肝癌中糖酵解途径的影响机制[J]. 临床肝胆病杂志, 2019, 35(6): 1374. doi: 10.3969/j.issn.1001-5256.2019.06.043
[9] WU J, ZHANG X, WANG Y, et al. Licochalcone A suppresses hexokinase 2-mediated tumor glycolysis in gastric cancer via downregulation of the Akt signaling pathway[J]. Oncol Rep, 2018, 39(3): 1181.
[10] LIN YH, WU MH, HUANG YH, et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 188. doi: 10.1002/hep.29462
[11] 周新媛, 洪佳馨, 何少兵, 等. 姜黄素对食管癌KYSE410细胞的生长抑制与氧化调节[J]. 高等学校化学学报, 2019, 40(7): 1405.
[12] YU T, LI L, LIU W, et al. Silencing of NADPH Oxidase 4 attenuates hypoxia resistance in neuroblastoma cells SH-SY5Y by inhibiting PI3K/Akt-dependent glycolysis[J]. Oncol Res, 2019, 27(5): 525. doi: 10.3727/096504018X15179668157803
[13] 钟晨怡, 冒韵东. 长非编码RNA在肿瘤细胞有氧糖酵解中的调控作用[J]. 国际肿瘤学杂志, 2019, 46(3): 170. doi: 10.3760/cma.j.issn.1673-422X.2019.03.008
[14] WANG CH, SHYU RY, WU CC, et al. Tazarotene-induced gene 1 interacts with DNAJC8 and regulates glycolysis in cervical cancer cells[J]. Mol Cells, 2018, 41(6): 562.
[15] DUTCHAK PA, ESTILL-TERPACK SJ, PLEC AA, et al. Loss of a negative regulator of mTORC1 induces aerobic glycolysis and altered fiber composition in skeletal muscle[J]. Cell Reports, 2018, 23(7): 1907. doi: 10.1016/j.celrep.2018.04.058
[16] CHEN Z, LIU M, LI L, et al. Involvement of the Warburg effect in non-tumor diseases processes[J]. J Cell Physiol, 2018, 233(4): 2839. doi: 10.1002/jcp.25998
[17] 蔡尚霞, 姜海英, 杨浩. 宫颈、阴道分泌物和血清PKM2检测在子宫内膜癌、宫颈癌诊断中的意义[J]. 中国实验诊断学, 2020, 24(4): 622. doi: 10.3969/j.issn.1007-4287.2020.04.025
[18] OKUNO R, ITO Y, EID N, et al. Upregulation of autophagy and glycolysis markers in keloid hypoxic-zone fibroblasts: Morphological characteristics and implications[J]. Histol Histopathol, 2018, 33(10): 1075.
[19] SINGH KB, HAHM ER, RIGATTI LH, et al. Inhibition of glycolysis in prostate cancer chemoprevention by phenethyl isothiocyanate[J]. Cancer Prev Res, 2018, 11(6): 337. doi: 10.1158/1940-6207.CAPR-17-0389
[20] LOSCHINSKI R, BÖTTCHER M, STOLL A, et al. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner[J]. Oncotarget, 2018, 9(17): 13125. doi: 10.18632/oncotarget.24442