[1] XIE Y, ZHAO H, GUO Y, et al. A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer[J]. Eur Radiol, 2021, 31(8): 6030. doi: 10.1007/s00330-020-07624-9
[2] SIEGEL RL, MILLER KD, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7. doi: 10.3322/caac.21332
[3] ETTINGER DS, WOOD DE, AISNER DL, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2017, 15(4): 504. doi: 10.6004/jnccn.2017.0050
[4] HUANG Y, LIU Z, HE L, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (Ⅰ or Ⅱ) non-small cell lung cancer[J]. Radiology, 2016, 281(3): 947. doi: 10.1148/radiol.2016152234
[5] LIU T, ZHOU S, YU J, et al. Prediction of lymph node metastasis in patients with papillary thyroid carcinoma: a radiomics method based on preoperative ultrasound images[J]. Technol Cancer Res Treat, 2019, 18: 1.
[6] 贾传亮, 曹嫒, 宋晴, 等. 基于MR的影像组学列线图预测喉癌颈淋巴结转移的临床价值[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(12): 1154. doi: 10.3760/cma.j.cn115330-20200719-00604
[7] LI M, ZHANG J, DAN Y, et al. A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Transl Med, 2020, 18(1): 46. doi: 10.1186/s12967-020-02215-0
[8] 王小雷, 高玉青, 徐鹤, 等. 基于能谱CT纹理分析在预测胃癌术前淋巴结转移中的价值[J]. 蚌埠医学院学报, 2021, 46(1): 21.
[9] THAWANI R, MCLANCE M, BEIG N, et al. Radiomics and radiogenomics in lung cancer: a review for the clinician[J]. Lung Cancer, 2018, 115: 34. doi: 10.1016/j.lungcan.2017.10.015
[10] CONG M, YAO H, LIU H, et al. Development and evaluation of a venous computed tomography radiomics model to predict lymph node metastasis from non-small cell lung cancer[J]. Medicine (Baltimore), 2020, 99(18): e20074. doi: 10.1097/MD.0000000000020074
[11] YANG G, NIE P, ZHAO L, et al. 2D and 3D texture analysis to predict lymph ovascular invasion in lung adenocarcinoma[J]. Eur J Radiol, 2020, 129: 109111. doi: 10.1016/j.ejrad.2020.109111
[12] DENG HY, ZENG M, LI G, et al. Lung adenocarcinoma has a higher risk of lymph node metastasis than Squamous cell carcinoma: a propensity score-matched analysis[J]. World J Surg, 2019, 43(3): 955. doi: 10.1007/s00268-018-4848-7
[13] 王敏, 宋彬, 黄子星, 等. 大数据时代的精准影像医学: 放射组学[J]. 中国普外基础与临床杂志, 2016, 23(6): 752.
[14] ZHONG Y, YUN M, ZHANG T, et al. Radiomics approach to prediction of occult mediastinal lymph node metastasis of lung adenocarcinoma[J]. AJR Am J Roentgenol, 2018, 211(1): 109. doi: 10.2214/AJR.17.19074
[15] LIU Y, KIM J, BALAGURUNATHAN Y, et al. Prediction of pathological nodal involvement by CT-based radiomics features of the primary tumor in patients with clinically node-negative peripheral lung adenocarcinomas[J]. Med Phys, 2018, 45(6): 2518. doi: 10.1002/mp.12901
[16] PHAN TD, WATANABE Y, HIGUCHI M, et al. Texture analysis and synthesis of malignant and benign mediastinal lymph nodes in patients with lung cancer on computed tomography[J]. Sci Rep, 2017, 1(1): 43209.
[17] ANDERSEN MB, HARDERS SW, GANESHAN B, et al. CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer[J]. Acta Radiol, 2016, 57(6): 669. doi: 10.1177/0284185115598808
[18] YANG X, PAN X, LIU H, et al. A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram[J]. J Thorac Dis, 2018, 10(Suppl 7): S807.