[1] ESCOBAR-MORREALE HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018, 14(5): 270. doi: 10.1038/nrendo.2018.24
[2] TANBO T, MELLEMBAKKEN J, BJERCKE S, et al. Ovulation induction in polycystic ovary syndrome[J]. Acta Obstet Gynecol Scand, 2018, 97(10): 1162. doi: 10.1111/aogs.13395
[3] JIN P, XIE Y. Treatment strategies for women with polycystic ovary syndrome[J]. Gynecol Endocrinol, 2018, 34(4): 272. doi: 10.1080/09513590.2017.1395841
[4] SHA T, WANG X, CHENG W, et al. A meta-analysis of pregnancy-related outcomes andcomplications in women with polycystic ovary syndrome undergoing IVF[J]. Reprod Biomed Online, 2019, 39(2): 281. doi: 10.1016/j.rbmo.2019.03.203
[5] RASHID N, NIGAM A, JAIN SK, et al. Proteomic sift through serum and endometrium profiles unraveled signature proteins associated with subdued fertility anddampened endometrial receptivity in women with polycystic ovary syndrome[J]. Cell Tissue Res, 2020, 380(3): 593. doi: 10.1007/s00441-020-03171-3
[6] LI J, LIU X, HU L, et al. A slower age-related decline in treatment outcomes after the first ovarian stimulation for in vitro fertilization in women with polycystic ovary syndrome[J]. Front Endocrinol(Lausanne), 2019, 10: 834. doi: 10.3389/fendo.2019.00834
[7] YANG X, QUAN X, LAN Y, et al. Serum chemerin level in women with PCOS and its relation with the risk of spontaneous abortion[J]. Gynecol Endocrinol, 2018, 34(10): 864. doi: 10.1080/09513590.2018.1462316
[8] PARAVATI R, DE MELLO N, ONYIDO EK, et al. Differential regulation of osteopontin and CD44 correlates with infertility status in PCOS patients[J]. J Mol Med(Berl), 2020, 98(12): 1713.
[9] 王心怡, 李东, 辛喜艳. 冻融胚胎移植结局相关影响因素的研究进展[J]. 生殖医学杂志, 2019, 28(4): 444.
[10] PAULSON RJ. Introduction: endometrial receptivity: evaluation, induction and inhibition [J]. Fertil Steril, 2019, 111(4): 609. doi: 10.1016/j.fertnstert.2019.02.029
[11] FUKUI Y, HIROTA Y, MATSUO M, et al. Uterine receptivity, embryo attachment, and em bryo invasion: multistep processes in embryo implantation[J]. Reprod Med Biol, 2019, 18(3): 234. doi: 10.1002/rmb2.12280
[12] BAŁKOWIEC M, MAKSYM RB, WŁODARSKI PK. The bimodal role of matrix metalloprotei nases and their inhibitors in etiology and pathogenesis of endometriosis(Review) [J]. Mol Med Rep, 2018, 18(3): 3123.
[13] WANG HW, ZHAO WP, TAN PP, et al. The MMP-9/TIMP-1 system is involved in fluoride-induced reproductive dysfunctions in female mice[J]. Biol Trace Elem Res, 2017, 178(2): 253. doi: 10.1007/s12011-016-0929-3
[14] BENKHALIFA M, ZAYANI Y, BACH V, et al. Does the dysregulation of matrix metalloproteinases contribute to recurrent implantation failure?[J]. Expert Rev Proteomics, 2018, 15(4): 311. doi: 10.1080/14789450.2018.1464915
[15] ZHANG S, MESALAM A, JOO MD, et al. Matrix metalloproteinases improves trophoblast invasion and pregnancy potential in mice[J]. Theriogenology, 2020, 151: 144. doi: 10.1016/j.theriogenology.2020.02.002
[16] YU Y, FANG L, WANG S, et al. Amphiregulin promotes trophoblast invasion and increases MMP9/TIMP1 ratio through ERK1/2 and Akt signal pathways[J]. Life Sci, 2019, 236: 116899. doi: 10.1016/j.lfs.2019.116899
[17] 姜爱芳. 基质金属蛋白酶及其抑制物在月经周期中表达的分析[J]. 中国妇幼保健杂志, 2016, 31(11): 2387.
[18] SU MT, TSAI PY, TSAI HL, et al. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9[J]. Biofactors, 2017, 43(2): 210. doi: 10.1002/biof.1325
[19] 罗希, 周从容, 周桦. 人胚胎培养液中MMP-9及其抑制剂TIMP-1与胚胎质量及IVF-ET结局关系[J]. 中国临床研究, 2018, 31(8): 1020.
[20] HE Y, SUN Q. IFN-γ induces upregulation of TNF-α, downregulation of MMP-2 and MMP-9 expressions in abortion rat[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4762.