[1] WEIL EJ, FUFAA G, JONES LI, et al. Erratum. Effect of losartan on prevention and progression of early diabetic nephropathy in American Indians with type 2 diabete[J]. Diabetes, 2018, 67(3): 532.
[2] YAKG D, LIVIKGSTOK MJ, LIU Z, et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential[J]. Cell Mol Life Sci, 2018, 75(4): 669. doi: 10.1007/s00018-017-2639-1
[3] 吕佳璇, 李月红. 糖尿病肾病的研究进展[J]. 临床内科杂志, 2016, 33(5): 296. doi: 10.3969/j.issn.1001-9057.2016.05.002
[4] HU C, SUN L, XIAO L, et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy[J]. Curr Med Chem, 2015, 22(24): 2858. doi: 10.2174/0929867322666150625095407
[5] 阎婷婷, 赵英政, 易宪文, 等. 氧化应激及炎症对糖尿病肾病的影响[J]. 新乡医学院学报, 2019, 36(8): 701.
[6] 张玉凤, 邓慧玲, 符佳, 等. 高迁移率族蛋白B1的临床研究进展[J]. 中国小儿急救医学, 2017, 24(8): 606. doi: 10.3760/cma.j.issn.1673-4912.2017.08.010
[7] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中国糖尿病杂志, 2014, 22(8): 2.
[8] 操轩, 胡亚琳, 陈健. 早期糖尿病肾病与胰岛素抵抗及微炎症状态之间关系的研究[J]. 临床内科杂志, 2016, 33(1): 28. doi: 10.3969/j.issn.1001-9057.2016.01.008
[9] 陈小永, 宋军营, 王自闯. 炎症和氧化应激在糖尿病肾病中的作用[J]. 中国老年学杂志, 2017, 37(1): 6254.
[10] 苏静, 陈琰, 王爱平, 等. 血清高迁移率族蛋白B1水平与老年2型糖尿病肾病的相关性[J]. 中国老年学杂志, 2018, 38(1): 111. doi: 10.3969/j.issn.1005-9202.2018.01.044
[11] 姚迪, 陆卫平, 周莉, 等. 高迁移率族蛋白B1在糖尿病肾病中的表达及意义[J]. 南京医科大学学报(自然科学版), 2016, 36(1): 60.
[12] ZHU P, XIE L, DING HS, et al. High mobility group box 1 and kidney diseases(Review)[J]. Int J Mol Med, 2013, 31(4): 763. doi: 10.3892/ijmm.2013.1286
[13] XU M, ZHOU GM, WANG LH, et al. Inhibiting high-mobility group box 1(HMGB1) attenuates inflammatory cytokine expression and neurological deficit in ischemic brain injury following cardiac arrest in rats[J]. Inflammation, 2016, 39(3): 1.
[14] WANG X, GUO Y, WANG C, et al. MicroRNA-142-3p inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting HMGB1[J]. Inflammation, 2016, 39(2): 1.
[15] HADJADJ S, CARIOU B, FUMERON F, et al. Death, end-stage renal disease and renal function decline in patients with diabetic nephropathy in French cohorts of type 1 and type 2 diabetes[J]. Diabetologia, 2016, 59(1): 208. doi: 10.1007/s00125-015-3785-3
[16] PEKG W, HUAKG S, SHEK L, et al. Long noncoding RKA KOKHSAG053901 promotes diabetic nephropathy via stimulating Egr-1/TGF-β-mediated renal inflammation[J]. J Cell Physiol, 2019, 234(10): 18492. doi: 10.1002/jcp.28485
[17] YANG X, WANG Y, GAO G. High glucose induces rat mesangial cells proliferation and MCP-1 expression via ROS-mediated activation of NF-κB pathway, which is inhibited by eleutheroside E[J]. J Recept Signal Transduct Res, 2016, 36(2): 152. doi: 10.3109/10799893.2015.1061002
[18] TANG DL, KANG R, LIVESEY KM, et al. High-mobility group box1 is essential for mitochondrial quality control[J]. Cell Metabol, 2011, 6(13): 701.
[19] LIU J, WANG C, LIU F, et al. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy[J]. Anal Bioanal Chem, 2015, 407(9): 2569. doi: 10.1007/s00216-015-8481-0
[20] PEREIRA C, COELHO R, GRACIO D, et al. DNA damage and oxidative DNA damage in inflammatory bowel disease[J]. J Crohns Colitis, 2016, 10(11): 1316. doi: 10.1093/ecco-jcc/jjw088
[21] NARNE P, PONNALURI KC, SIRAJ M, et al. Polymorphisms in oxidative stress pathway genes and risk of diabetic nephropathy in South Indian type 2 diabetic patients[J]. Nephrology, 2014, 19(10): 623. doi: 10.1111/nep.12293