[1] SIEGELl RL, MILLER KD, JEMAL A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7. doi: 10.3322/caac.21442
[2] JIA Y, YUN CH, PARK E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors[J]. Nature, 2016, 534(7605): 129. doi: 10.1038/nature17960
[3] ETTINGER DS, WOOD DE, AISNER DL, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical guidelines in Oncology[J]. J Natl Compr Canc Netw, 2017, 15(4): 504. doi: 10.6004/jnccn.2017.0050
[4] RIELY GJ, PAO W, PHAM D, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib[J]. Clin Cancer Res, 2006, 12(3): 839. doi: 10.1158/1078-0432.CCR-05-1846
[5] SORIA JC, OHE Y, VANSTEENKISTE J, et al. Osimertinib in untreated EGFR-Mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113. doi: 10.1056/NEJMoa1713137
[6] LOUGHRAN CF, KEELING CR. Seeding of tumour cells following breast biopsy: a literature review[J]. Br J Radiol, 2011, 84(1006): 869. doi: 10.1259/bjr/77245199
[7] LEE G, LEE HY, PARK H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art[J]. Eur J Radiol, 2017, 86(16): 297.
[8] 张静, 武志峰, 鄂林宁. 肺结节(≤ 2 cm)及其周围组织的影像组学特征在其良恶性鉴别中的价值[J]. 中国临床医学影像杂志, 2020, 31(7): 478.
[9] 单文莉, 柏根基, 孔丹, 等. 基于常规CT图像应用影像组学模型预测浸润性肺腺癌不同分化程度的价值[J]. 临床放射学杂志, 2020, 39(6): 1095.
[10] ZHANG L, CHEN B, LIU X, et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer[J]. Transl Oncol, 2018, 11(1): 94. doi: 10.1016/j.tranon.2017.10.012
[11] LIU G, XU Z, GE Y, et al. 3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma[J]. Transl Lung Cancer Res, 2020, 9(4): 1212. doi: 10.21037/tlcr-20-122
[12] DIGUMARTHY SR, PADOLE AM, GULLO RL, et al. Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status?[J]. Medicine, 2019, 98(1): e13963. doi: 10.1097/MD.0000000000013963
[13] GOH V, GANESHAN B, NATHAN P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker[J]. Radiology, 2011, 261(1): 165. doi: 10.1148/radiol.11110264
[14] LIU Q, SUN D, LI N, et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using 18F-FDG PET/CT radiomic features[J]. Transl Lung Cancer Res, 2020, 9(3): 549. doi: 10.21037/tlcr.2020.04.17
[15] MEI D, LUO Y, WANG Y, et al. CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses[J]. Cancer Imaging, 2018, 18(1): 52. doi: 10.1186/s40644-018-0184-2
[16] RIZZO S, RAIMONDI S, DE JONG EEC, et al. Genomics of non-small cell lung cancer(NSCLC): association between CT-based imaging features and EGFR and K-RAS mutations in 122 patients-An external validation[J]. Eur J Radiol, 2019, 110(1): 148.
[17] LIU Y, KIM J, BALAGURUNATHAN Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas[J]. Clin Lung Cancer, 2016, 17(5): 441. doi: 10.1016/j.cllc.2016.02.001
[18] DANG Y, WANG R, QIAN K, et al. Clinical and radiological predictors of epidermal growth factor receptor mutation in nonsmall cell lung cancer[J]. J Appl Clin Med Phys, 2021, 22(1): 271. doi: 10.1002/acm2.13107
[19] WANG H, GUO H, WANG Z, et al. The diagnostic value of quantitative CT analysis of ground-glass volume percentage in differentiating epidermal growth factor receptor mutation and subtypes in lung adenocarcinoma[J]. Biomed Res Int, 20192019: 1.
[20] LEE HJ, KIM YT, KANG CH, et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: relationship with CT characteristics and histologic subtypes[J]. Radiology, 2013, 268(1): 254. doi: 10.1148/radiol.13112553
[21] SUGANO M, SHUMIZU K, NAKANO T, et al. Correlation between computed tomography findings and epidermal growth factor receptor and KRAS gene mutations in patients with pulmonary adenocarcinoma[J]. Oncol Rep, 2011, 26(5): 1205.