• 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国高校优秀期刊
  • 安徽省优秀科技期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因修饰细胞促进关节软骨损伤修复的潜力与挑战

陈传好

引用本文:
Citation:

基因修饰细胞促进关节软骨损伤修复的潜力与挑战

    作者简介: 陈传好(1971-),男,硕士研究生导师,医学博士,教授。
  • 基金项目:

    安徽省自然科学基金资助项目(11040606M163)

    蚌埠医学院博士科研启动基金资助项目(2010BR0307)

  • 摘要: 关节软骨损伤导致的退化性关节疾病影响了世界人口的约三分之一,超过一半的60岁以上老人存在关节功能紊乱。因此,找到一种优化治疗软骨疾病的策略具有较高的社会、经济效益。
  • [1] Jackson DW,Simon TM,Aberman HM. Symptomatic articular cartilage degeneration:the impact in the new millennium[J].Clin Orthop Relat Res,2001(391 Suppl):S14- S25.
    [2] Gomoll AH,Farr J,Gillogly SD,et al. Surgical management of articular cartilage defects of the knee[J]. Instr Course Lect,2011,60:461-483.
    [3] Cucchiarini M,Madry H. Gene therapy for cartilage defects[J]. J Gene Med,2005,7(12):1495-1509.
    [4] Buckwalter JA,Mankin HJ. Articular cartilage:tissue design and hondrocyte-matrix interactions[J]. Instr Course Lect,1998,47:477-486.
    [5] Kaul G,Cucchiarini M,Arntzen D,et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo[J]. J Gene Med,2006,8(1):100-111.
    [6] Madry H,Kaul G,Cucchiarini M,et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor Ⅰ(IGF-Ⅰ)[J]. Gene Ther,2005,12(15):1171-1179.
    [7] Madry H,Emkey G,Zurakowski D,et al. Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation[J]. J Gene Med,2004,6(2):238-245.
    [8] Tsuchiya H,Kitoh H,Sugiura F,et al. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun,2003,301(2):338-343.
    [9] Grossin L,Cournil-Henrionnet C,Pinzano A,et al. Gene transfer with HSP 70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis[J]. FASEB J,2006,20(1):65-75.
    [10] Zhang HN,Leng P,Wang YZ,et al. Treating human meniscal fibrochondrocytes with hIGF-1 gene by liposome[J]. Clin Orthop Relat Res,2009,467(12):3175-3182.
    [11] Manning K,Rachakonda PS,Rai MF,et al. Co-expression of insulin-like growth factor-1 and interleukin-4 inan in vitro inflammatory model[J]. Cytokine,2010,50(3):297-305.
    [12] Madry H,Zurakowski D,Trippel SB. Overexpression of human insulin-like growth factor-Ⅰ promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation[J]. Gene Ther,2001,8(19):1443-1449.
    [13] Li Y,Tew SR,Russell AM,et al. Transduction of passaged human articular chondrocytes with adenoviral,retroviral,and lentiviral vectors and the effects of enhanced expression of SOX9[J].Tissue Eng,2004,10(3/4):575-584.
    [14] Brower-Toland BD,Saxer RA,Goodrich LR,et al. Direct adenovirus-mediated insulin-like growth factor Ⅰ gene transfer enhances transplant chondrocyte function[J]. Hum Gene Ther,2001,12(2):117-129.
    [15] Gelse K,Jiang QJ,Aigner T,et al. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer[J]. Arthritis Rheum,2001,44(8):1943-1953.
    [16] Musgrave DS,Pruchnic R,Bosch P,et al. Human skeletal muscle cells in ex vivo gene therapy to deliver bone morphogenetic protein-2[J]. J Bone Joint Surg Br,2002,84(1):120-127.
    [17] Ikeda T,Kamekura S,Mabuchi A,et al. The combination of SOX5,SOX6,and SOX9 (the SOX trio ) provides signals sufficient for induction of permanent cartilage[J]. Arthritis Rheum,2004,50(11):3561-3573.
    [18] Haupt JL,Frisbie DD,McIlwraith CW,et al. Dual transduction of insulin-like growth factor-Ⅰ and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model[J]. J Orthop Res,2005,23(1):118-126.
    [19] Steinert AF,Palmer GD,Capito R,et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor- 1 complementary deoxyribonucleic acid[J]. Tissue Eng,2007,13(9):2227-2237.
    [20] Steinert AF,Proffen B,Kunz M,et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bonemor phogenetic protein-2 and bone morphogenetic protein-4 gene transfer[J]. Arthritis Res Ther,2009,11(5):R148.
    [21] Mason JM,Breitbart AS,Barcia M,et al. Cartilage and bone regeneration using gene-enhanced tissue engineering[J]. Clin Orthop Relat Res,2000(379 Suppl):S171- S178.
    [22] Goto H,Shuler FD,Niyibizi C,et al. Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta ( 1 ) gene [J].Osteoarthritis Cartilage,2000,8(4):266-271.
    [23] Tew SR,Li Y,Pothacharoen P,et al. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes [J].Osteoarthritis Cartilage,2005,13(1):80-89.
    [24] Pagnotto MR,Wang Z,Karpie JC,et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair[J]. Gene Ther,2007,14(10):804-813.
    [25] Cucchiarini M,Thurn T,Weimer A,et al. Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9[J]. Arthritis Rheum,2007,56(1):158-167.
    [26] Cucchiarini M,Terwilliger EF,Kohn D,et al. Remodelling of human osteoarthritic cartilage by FGF-2,alone or combined with Sox9 via rAAV gene transfer[J]. J Cell Mol Med,2009,13(8B):2476-2488.
    [27] Chamberlain JR,Schwarze U,Wang PR,et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta[J].Science,2004,303(5661):1198-1201.
    [28] Basile P,Dadali T,Jacobson J,et al. Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery [J]. Mol Ther,2008,16(3):466-473.
    [29] Ito H,Koefoed M,Tiyapatanaputi P,et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy[J]. Nat Med,2005,11(3):291-297.
    [30] Wang XT,Liu PY,Xin KQ,et al. Tendon healing in vitro:bFGF gene transfer to tenocytes by adeno-associated viral vectors promotes expression of collagen genes[J]. J Hand Surg Am,2005,30(6):1255-1261.
    [31] Tang JB,Cao Y,Zhu B,et al. Adeno-associated virus-2-mediated bFGF gene transfer to digital flexor tendons significantly increases healing strength. an in vivo study[J]. J Bone Joint Surg Am,2008,90(5):1078-1089.
    [32] Cucchiarini M,Schetting S,Terwilliger EF,et al. rAAV mediated overexpression of FGF-2 promotes cell proliferation,survival,and alpha-SMA expression in human meniscal lesions[J]. Gene Ther,2009,16(11):1363-1372.
    [33] Xiao X,Li J,Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector[J]. J Virol,1996,70(11):8098-8108.
    [34] Kafienah W,Al-Fayez F,Hollander AP,et al. Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach[J]. Arthritis Rheum,2003,48(3):709-718.
    [35] Baragi VM,Renkiewicz RR,Jordan H,et al. Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation[J]. J Clin Invest,1995,96(5):2454-2460.
    [36] Kim SH,Kim S,Evans CH,et al. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4[J]. J Immunol,2001,166(5):3499-3505.
    [37] Schmal H,Mehlhorn AT,Zwingmann J,et al. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor(hEGF) and basic fibroblast growth factor (bFGF)[J]. Cytotherapy,2005,7(3):292-300.
    [38] Lee DK,Choi KB,Oh IS,et al. Continuous transforming growth factor beta1 secretion by cell-mediated gene therapy maintains chondrocyte redifferentiation[J]. Tissue Eng,2005,11(1/2):310-318.
    [39] Surendran S,Kim SH,Jee BK,et al. Anti-apoptotic Bcl-2 gene transfection of human articular chondrocytes protects against nitric oxide-induced apoptosis[J]. J Bone Joint Surg Br,2006,88(12):1660-1665.
    [40] Piera-Velazquez S,Jimenez SA,Stokes D. Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase[J]. Arthritis Rheum,2002,46(3):683-693.
    [41] Doherty PJ,Zhang H,Tremblay L,et al. Resurfacing of articular cartilage explants with genetically modified human chondrocytes in vitro[J]. Osteoarthritis Cartilage,1998,6(3):153-159.
    [42] Hidaka C,Quitoriano M,Warren RF,et al. Enhanced matrix synthesis and in vitro formation of cartilage-like tissue by genetically modified chondrocytes expressing BMP-7 [J]. J Orthop Res,2001,19(5):751-758.
    [43] Eming SA,Snow RG,Yarmush ML,et al. Targeted expression of insulin-like growth factor to human keratinocytes:modification of the autocrine control of keratinocyte proliferation[J]. J Invest Dermatol,1996,107(1):113-120.
    [44] Patel RS,Temu TM,Jeanbart L,et al. A localizable,biological-based system for the delivery of bioactive IGF-1 utilizing microencapsulated genetically modified human fibroblasts[J].ASAIO J,2009,55(3):259-265.
    [45] Park J,Gelse K,Frank S,et al. Transgene-activated mesenchymal cells for articular cartilage repair:a comparison of primary bone marrow-,perichondrium /periosteum-and fat-derived cells[J]. J Gene Med,2006,8(1):112-125.
    [46] Che JH,Zhang ZR,Li GZ,et al. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits[J]. Knee Surg Sports Traumatol Arthrosc,2010,18(4): 496-503.
    [47] Gelse K,Muhle C,Franke O,et al. Cell based resurfacing of large cartilage defects:long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis[J]. Arthritis Rheum,2008,58(2):475-488.
    [48] Vogt S,Wexel G,Tischer T,et al. The influence of the stable expression of BMP2 in fibrinclots on the remodelling and repair of osteochondral defects[J]. Biomaterials,2009,30(12):2385-2392.
    [49] Guo X,Zheng Q,Yang S,et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene[J]. Biomed Mater,2006,1(4):206-215.
    [50] Katayama R,Wakitani S,Tsumaki N,et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow[J]. Rheumatology(Oxford),2004,43(8):980-985.
    [51] Evans CH,Robbins PD,Ghivizzani SC,et al. Gene transfer to human joints:progress toward a gene therapy of arthritis[J]. Proc Natl Acad Sci U S A,2005,102(24):8698-8703.
    [52] Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix induced autologous chondrocyte implantation procedure[J]. Am J Sports Med,2010, 38(6):1259-1271.
    [53] Tuan RS. Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering[J]. Arthritis Rheum,2006,54(10):3075-3078.
    [54] Loken S,Jakobsen RB,Aroen A,et al. Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model[J]. Knee Surg Sports Traumatol Arthrosc,2008,16(10):896-903.
  • [1] 蒋会东李军韦树华孟庆涛 . 低场强MRI在膝关节外伤手术中的指导作用. 蚌埠医学院学报, 2012, 36(6): 708-709.
    [2] 牛尚甫骆俊 . 磁共振对膝关节半月板桶柄状撕裂的诊断价值. 蚌埠医学院学报, 2015, 40(4): 519-522. doi: 10.13898/j.cnki.issn.1000-2200.2015.04.035
    [3] 秦骥蔡道章卓巍 . 自体骨髓基质细胞立体培养修复关节软骨缺损的实验研究. 蚌埠医学院学报, 2007, 32(5): 508-510.
    [4] 白笙君王伟陈传好 . 基质金属蛋白酶基因在兔关节软骨细胞体外损伤后不同时间点的表达变化. 蚌埠医学院学报, 2018, 43(4): 458-461. doi: 10.13898/j.cnki.issn.1000-2200.2018.04.010
    [5] 赵明魏艳红 . 自体富血小板血浆联合骨髓基质干细胞复合改建脱细胞真皮基质修复兔关节软骨的可行性研究. 蚌埠医学院学报, 2016, 41(8): 981-984. doi: 10.13898/j.cnki.issn.1000-2200.2016.08.001
    [6] 刘旋张磊张凤军 . lncRNA Zeb1-AS1调控JAK2/STAT3信号通路影响骨关节炎软骨细胞的增殖和凋亡. 蚌埠医学院学报, 2023, 48(11): 1510-1513. doi: 10.13898/j.cnki.issn.1000-2200.2023.11.006
    [7] 张廷玖张东曾凡伟庾明王枰稀 . 自体软骨镶嵌移植术治疗膝关节股骨髁软骨缺损23例. 蚌埠医学院学报, 2013, 37(10): 1314-1316.
    [8] 杜娟张莉王怀谷李旭文刘继松 . 自体耳甲软骨移植在唇裂术后鼻畸形修复中的应用. 蚌埠医学院学报, 2011, 36(3): 248-249.
    [9] 李淑华朱芸马宜传谢宗玉宋宏伟周莉 . 膝关节骨性关节炎软骨形态与T2值的MRI对比性分析. 蚌埠医学院学报, 2019, 44(12): 1668-1669. doi: 10.13898/j.cnki.issn.1000-2200.2019.12.024
    [10] 章立群刘学任英华陈沐 . 脂肪干细胞体外培养特性及成脂成软骨分化研究. 蚌埠医学院学报, 2018, 43(1): 1-3. doi: 10.13898/j.cnki.issn.1000-2200.2018.01.001
    [11] 黄丽丽许礼发 . 细胞因子基因型多态性与HPV引起的子宫颈损伤相关性研究. 蚌埠医学院学报, 2012, 36(7): 783-784,787.
    [12] 黄涛李静殷献录 . 嵌合抗原受体修饰T细胞在复发、难治性慢性淋巴细胞白血病中的治疗进展. 蚌埠医学院学报, 2017, 42(1): 139-141. doi: 10.13898/j.cnki.issn.1000-2200.2017.01.043
    [13] 刘金凤李勇余勇卓丹 . 腓肠浅动脉筋膜蒂皮瓣修复膝关节外露创面应用体会. 蚌埠医学院学报, 2008, 33(3): 321-322.
    [14] 段立彬何先弟 . 细胞因子与急性肺损伤的关系. 蚌埠医学院学报, 2010, 35(2): 208-210.
    [15] 方小魁华栋李光早 . 同种异体脂肪干细胞复合脱钙骨材料修复兔尺骨缺损. 蚌埠医学院学报, 2014, 38(3): 297-301.
    [16] 章立群任英华杨芬 . 脂肪干细胞异位成骨修复兔上颌大面积缺损效果. 蚌埠医学院学报, 2018, 43(6): 705-707. doi: 10.13898/j.cnki.issn.1000-2200.2018.06.002
    [17] 朱海胡建国吕合作 . 流式细胞术检测脊髓损伤大鼠局部浸润的巨噬细胞亚群. 蚌埠医学院学报, 2013, 37(8): 925-928.
    [18] 温利辉农义军莫明辉王俊詹磊 . 虹膜损伤13例个性化修复术效果观察. 蚌埠医学院学报, 2014, 38(4): 494-496.
    [19] 敖洪威 . 正畸牵引联合玻璃纤维桩桩冠修复在前牙损伤中的应用. 蚌埠医学院学报, 2016, 41(5): 629-630. doi: 10.13898/j.cnki.issn.1000-2200.2016.05.024
    [20] 施静静刘毅陈涛金泉伟王婧蕾徐杰 . 帕金森病人血清分化型胚胎软骨表达基因1和肝X受体β水平的相关性研究. 蚌埠医学院学报, 2017, 42(10): 1371-1373. doi: 10.13898/j.cnki.issn.1000-2200.2017.10.024
  • 加载中
计量
  • 文章访问数:  3349
  • HTML全文浏览量:  345
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-15
  • 刊出日期:  2013-01-15

基因修饰细胞促进关节软骨损伤修复的潜力与挑战

    作者简介: 陈传好(1971-),男,硕士研究生导师,医学博士,教授。
  • 1. 蚌埠医学院 人体解剖学教研室, 安徽 蚌埠 233030
基金项目:  安徽省自然科学基金资助项目(11040606M163)蚌埠医学院博士科研启动基金资助项目(2010BR0307)

摘要: 关节软骨损伤导致的退化性关节疾病影响了世界人口的约三分之一,超过一半的60岁以上老人存在关节功能紊乱。因此,找到一种优化治疗软骨疾病的策略具有较高的社会、经济效益。

参考文献 (54)

目录

    /

    返回文章
    返回