同种异体脂肪干细胞复合脱钙骨材料修复兔尺骨缺损
The effect of allogeneic rabbit adipose-derived stem cells combined with decalcified bone material in the repair of ulna defect in rabbit
-
摘要: 目的:探讨同种异体脂肪干细胞(adipose-derived stem cells,ADSCs)组织工程骨修复兔管状骨缺损的可行性。方法:获取新西兰大白兔的肩胛部脂肪,分离培养具有多向分化潜能的ADSCs;第三代兔ADSCs与脱钙骨复合后,体外成骨诱导培养(LG-DMEM)设为对照。制造兔两侧尺骨临界大小(长度15 mm)的缺损,分别植入兔ADSCs-脱钙骨复合物(实验侧)和单纯脱钙骨材料(对照侧);12周后取样本,三维CT和组织学检测观察成骨情况。结果:细胞-材料复合物植入12周后,三维CT显示实验侧有新生骨基质长成,对照侧未见骨组织生成;组织学检测显示实验侧缺损区被典型的骨组织取代,可见新生骨小梁附着于脱钙骨表面,而对照侧只有少量的骨组织和纤维组织充填。结论:兔ADSCs能在脱钙骨上很好的黏附和生长,兔ADSCs-脱钙骨材料复合物植入体内能成功修复临界大小的管状骨缺损。Abstract: Objective:To investigate the feasibility of allogeneic adipose-derived stem cells(ADSCs) in tissue engineering bone repair of tubular bone defects. Methods:The rabbit ADSCs were isolated and cultured from scapular fat of New Zealand white rabbits. Passage 3 rADSCs were seeded onto demineralized bone matrix(DBM) and osteoinductively cultured,LG-DMEM was set as control group. Bilateral critical-sized bone defects(15 mm) of ulna were created. One side of the defect was repaired with rADSCs-DBM(experimental group),another side of the defect was repaired with only DBM(control group). The osteogenesis was observed by three-dimensional CT and histological examination at 12 weeks after treatment. Results:At 12 weeks after implantation,three-dimensional CT scan showed that new bones formed in experimental group,while no bone tissue formation in control group. Histological examination revealed that the defect was replaced by typical bone tissue in experimental side,while only minimal bone formation and fibrous connection was observed in control group. Conclusions:rADSCs can well adhere and grow in the surface of DBM. Rabbit ADSCs combined with decalcified bone material can successfully repair the critical-sized tubular bone defects.
-
[1] PorteRJR,Ruckh TT,Popat KC. Bone tissue engineering:a review in bone biomimetics and drug delivery strategies[J]. Biotechnol Prog,2009,25(6):1539-1560. [2] [2] Drosse I,VolkmeRE,Capanna R,et al. Tissue engineering for bone defect healing:an update on a multi-component approach [J]. Injury,2008,39(Suppl 2):S9-S20. [3] [3] Crane GM,Ishug SL,Mikos AG. Bone tissue engineering[J]. Nature Medicine,1995,1(12):1322-1324. [4] [4] Zuk PA,Zhu M,Mizuno H,et al. Multilineage cells from human adipose tissue:implications foRcell-based therapies[J]. Tissue Eng,2001,7(2):211-228. [5] [5] Mitchell JB,Mcintosh K,Zvonic S,et al. Immunophenotype of human adipose derived cells:temporal changes in stromal-associated and stem cell-associated markers[J]. Stem Cells, 2006,24(2):376-385.[6] Zuk PA,Zhu M,Ashjian P,et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell,2002,13 (12):4279-4295. [6] [7] Dragoo JL,Choi JY,Lieberman JR,et al. Bone induction by B MP-2 transduced stem cells derived from human fat[J]. J Orthop Res,2003,21(4):622-629. [7] [8] Hicok KC,Du Laney TV,Zhou YS,et al. Human adipose-derived adult stem cells produce osteoid in vivo[J]. Tissue Eng,2004, 10(3/4):371-380. [8] [9] Cowan CM,Shi YY,Aalami OO,et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects[J]. Nat Biotechnol,2004,22(5):560-567. [9] [10] Cowan CM,Aslami OO,Shi YY,et al. Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment,and bone turnover[J]. Tissue Eng,2005, 11(3/4):645-658. [10] [11] Yang M,Ma QJ,Dang GT,et al. In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7[J]. Cytotherapy, 2005,7(3):273-281. [11] [12] Halvorsen YD,Franklin D,Bond AL,et al. ExtracellulaRmatrix mineralization and ostsoblast gene expression by human adipose tissue-derived stromal cells[J]. Tissue Eng,2001,7 (6):729-741. [12] [13] Peterson B,Zhang J,Iglesias R,et al. Healing of critically sized femoral defects,using modified mesenchymal stem cells from human adipose tissue[J]. Tissue Eng,2005,11 (1/2):120-129. [13] [14] Schmitz JP,HollingeRJO. The critical size defect as an experimental model foRcraniomandibulofacial nonunions[J]. Clin Orthop Relat Res,1986(205):299-308. [14] [15] Dudas JR,Marra KG,CoopeRGM,et al. The osteogenic potential of adipose-derived stem cells foRthe repaiRof rabbit calvarial defects[J]. Ann Plast Surg,2006,56(5):543-548. [15] [16] HollingeRJO,Kleinschmidt JC. The critical size defect as an experimental model to test bone repaiRmaterials[J]. J Craniofac Surg,1990,1(1):60-68. [16] [17] Clokie CM,Moghadam H,Jackson MT,et al. Closure of critical sized defects with allogenic and alloplastic bone substitutes[J]. J Craniofac Surg,2002,13(1):111-121. [17] [18] Ueki K,Takazakura D,Marukawa K,et al. The use of polylactic acid/polyglycolic acid copolymeRand gelatin sponge complex containing human recombinant bone morphogenetic protein-2 following condylectomy in rabbits[J]. J Craniomaxillofac Surg, 2003,31(2):107-114. [18] [19] KubleRN,Michel C,ZolleRJ,et al. RepaiRof human skull defects using osteoinductive bone alloimplants[J]. J Craniomaxillofac Surg,1995,23(6):337-346. [19] [20] Kon E,Muraglia A,Corsi A,et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repaiRin critical-size defects of sheep long bones[J]. J Biomed MateRRes,2000,49(3):328-337. [20] [21] Yuan J,Cui L,Zhang WJ,et al. RepaiRof canine mandibulaRbone defects with bone marrow stromal cells and porous beta-tricalcium phosphate[J]. Biomaterials,2007,28(6):1005-1013. [21] [22] 张新建,徐展望,常峰,等. 组织工程化人工骨修复骨缺损的 实验研究[J]. 中国矫形外科杂志,2009,17 (16):1258-1261. [22] [23] Harris SE,Sabatini M,Harris MA,et al. Expression of bone morphogenetic protein messengeRRNA in prolonged cultures of fetal rat calvarial cells[J]. J Bone MineRRes,1994,9(3):389-394. [23] [24] Bi LX,Simmons DJ,Mainous E. Expression of BMP-2 by rat bone marrow stromal cells in culture[J]. Calcif Tissue Int,1999, 64(1):63-68. [24] [25] Frank O,Heim M,Jakob M,et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro[J]. J Cell Biochem,2002,85 (4):737-746. [25] [26] Di Bella C,Farlie P,Penington AJ,et al. Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells[J]. Tissue Eng Part A,2008,14(4):483-490. [26] [27] 孔学明. 脱钙骨基质诱导成骨活性的因素分析[J]. 国外医 学:外科学分册,2001,28(5):286-288. [27] [28] 杨维东,彭品祥,马振国,等. 异体脱钙骨修复创伤性眶底缺 损[J]. 实用口腔医学杂志,1994,10(3)175-177. [28] [29] 陈伟,江毅. 脱钙骨支架与诱导培养的脂肪基质细胞复合修 复兔胫骨缺损[J]. 中国组织工程研究与临床康复,2009, 13(34):6650-6654. [29] [30] Conolly JF. Injectable bone marrow preparations to stimulate osteogenic repair[J]. Clin Orthop,1995(313):8-18. [30] [31] 尹烁,崔磊,杨平,等. 脂肪干细胞 HLA 分子表达与体外抑制 淋巴细胞增殖的实验研究[J]. 中华医学杂志,2005,85(27):1890-1894. -

计量
- 文章访问数: 2900
- HTML全文浏览量: 317
- PDF下载量: 119
- 被引次数: 0