[文章编号] 1000-2200(2016)07-0849-05

• 基础医学 •

长链非编码 RNA GAS5 对人乳腺癌细胞株增殖和侵袭能力的影响

吴海华1,李 钰1,张凌宇1,王海凤1,陈 丽2,黄文明2,陈素莲3,陈昌杰3,杨清玲3

[摘要] \mathbf{a} 的:探讨长链非编码 RNA GAS5 对人乳腺癌细胞增殖、侵袭及迁移生物学活性的影响。 \mathbf{a} 法:qRT-PCR 方法检测 3 株乳腺癌细胞株 SKBR-3、MDA-MB-231 及 MCF-7 中 LncRNA GAS5 的表达;LncRNA GAS5 干扰片段和过表达载体分别转染 LncRNA GAS5 高表达以及低表达的乳腺癌细胞株,qRT-PCR 方法检测转染后 LncRNA GAS5 的表达;磺酰罗丹明 B 染色法检测细胞的增殖能力;Transwell 和划痕实验检测细胞的侵袭及迁移能力。 $\mathbf{4}$ 果:LncRNA GAS5 在乳腺癌 SKBR-3 细胞中表达量最低,MCF-7 细胞中表达量最高(P < 0.01);SKBR-3 以及 MCF-7 细胞分别转染 LncRNA GAS5 过表达载体和干扰片段后,SKBR-3 细胞 LncRNA GAS5 表达量增高,MCF-7 表达量降低(P < 0.01);下调 LncRNA GAS5 的表达,细胞的增殖能力升高,侵袭及迁移能力增强(P < 0.01);过表达 LncRNA GAS5 之后,细胞的增殖能力、侵袭和迁移能力减弱(P < 0.01)。 $\mathbf{5}$ 论:LncRNA GAS5 是涉及到乳腺癌发展的一个新型的分子,有可能成为乳腺癌治疗的潜在靶点。

[关键词] 乳腺肿瘤:长链非编码 RNA:GAS5:增殖:迁移:侵袭

[中图法分类号] R 737.9

[文献标志码] A

DOI: 10. 13898/j. cnki. issn. 1000-2200. 2016. 07. 003

The effect of LncRNA GAS5 on prolification, migration and invation in breast cancer cells

WU Hai-hua¹, LI Yu¹, ZHANG Ling-yu¹, WANG Hai-feng¹, CHEN Li²,

HUANG Wen-ming², CHEN Su-lian³, CHEN Chang-jie³, YANG Qing-ling³

(1. Clinical Testing and Diagnose Experimental Center, 2. Departmen of Bioscience,

3. Department of Biochemistry & Molecular Biology, Bengbu Medical College, Bengbu Anhui 233030, China)

[Abstract] Objective: To investigate the effect of LncRNA GAS5 on prolification, migration and invation in breast cancer cells. Methods: To achieve our goal, we used qRT-PCR assay to detect the expression of LncRNA GAS5 in breast cancer SKBR-3, MDA-MB-231 and MCF-7 cells; SRB assay was used to measure the prolification ability of breast cancer cells; Wound healing and Transwell assay was used to dentect the ability of invation and migration in breast cancer cells. Results: Among the three breast cancer cell lines, the expression level of LncRNA GAS5 in SKBR-3 cell is lowest and the expression level of LncRNA GAS5 in MCF-7 cell is highest (P < 0.01). After transfected MCF-7 or SKBR-3 cells with si-GAS5 or pcDNA-GAS5-vertor, the expression level of LncRNA GAS5 in MCF-7 cells is down-regulated and in SKBR-3 cells is up-regulated (P < 0.01), depletion of LncRNA GAS5, the prolification, invation and migration ability of MCF-7 cells is increased (P < 0.01). Overexpression of LncRNA GAS5 made the prolification, invation and migration ability of SKBR-3 cells decreased (P < 0.01). Conclusions: lncRNA GAS5 is a novel molecule involved in breast cancer progression, which provide a potential therapeutic target.

[Key words] breast neoplasms; the long non-coding RNA; GAS5; prolification; invation; migration

乳腺癌是女性最常见的恶性肿瘤,据统计,2014年美国有232670例新确诊的乳腺癌病例,有

「收稿日期〕2016-05-05

[基金项目] 安徽省教育厅自然科学重大项目(KJ2015ZD29, KJ2016SD37); 安徽省自然科学基金项目 (1508085MH159);安徽省高校学科(专业)拔尖人才学术资助重点项目(gxbjZD2016069);国家级大学生创新项目(201410367023);蚌埠医学院大学生创新项目 (201510367022);蚌埠医学院研究生创新项目 (Byyex1524)

[作者单位] 蚌埠医学院 1. 临床检验诊断学实验中心, 2. 生物科学系, 3. 生物化学教研室, 安徽 蚌埠 233030

「作者简介] 吴海华(1989 -),女,硕士研究生.

[通信作者] 杨清玲,硕士,硕士研究生导师,教授. E-mail;yqlmimi@ 163. com

40 000例患者死于乳腺癌^[1]。尽管目前对乳腺癌的治疗已经取得了很大的进步,但仍有高达 30%的患者在接受正规的治疗后死于乳腺癌的复发和转移^[2],因此对其转移的机制进行研究就显得尤为重要。长链非编码 RNAs(the Long Non-Coding RNAs, LncRNAs)是一类转录本长度超过 200 nt 且不编码蛋白的 RNA 分子。最近研究^[3-4]发现 LncRNAs 在癌症的形成过程中发挥关键的作用,参与调控细胞的增殖、凋亡、侵袭及转移等过程。 LncRNA GAS5最初是通过消减杂交的方法从 NIH 3T3 细胞中分离出来,目前越来越多的研究^[5-7]发现 LncRNA GAS5在许多癌症中发挥着不同的调控作用,如 LncRNA GAS5在许多癌症中发挥着不同的调控作用,如 LncRNA GAS5在许多癌症中发挥着不同的调控作用,如 LncRNA GAS5在前列腺癌、肾细胞癌以及乳腺癌细胞中低表达充当着抑癌基因的角色,而在骨肉瘤细胞中高

表达发挥着癌基因的作用^[8]。已有报道^[9] 称 LncRNA GAS5 在调控细胞的周期及凋亡方面发挥 关键的作用,但对其在调控细胞的侵袭及转移方面的研究较少。本研究就 LncRNA GAS5 对乳腺癌细胞增殖、侵袭及转移能力的影响作一探讨。

1 材料与方法

1.1 材料与试剂 人乳腺癌细胞株 MCF-7、SKBR-3 和 MDA-MB-231 购自中国科学院细胞库; 胎牛血清购自 Hlyclone 公司; DMEM 高糖培养基和 G418 购自 Gibco 公司; Trizol 试剂和 Lipofectamine 2000 购自 Invitrogen 公司; 逆转录试剂盒购自 Fermentas 公司; LncRNA GAS5 干扰片段及过表达载体购自上海吉玛制药技术有限公司; 质粒提取试剂盒购自AXYGEN 公司; 所有引物合成和 DNA 序列测定由南京金斯瑞生物科技有限公司完成。

1.2 方法

- 1.2.2 qRT-PCR 检测 LncRNA GAS5 的表达情况 Trizol 法提取总 RNA,根据逆转录试剂说明书进行逆转录反应,按照荧光定量试剂盒说明书进行实时 PCR 反应。GAPDH 作为内参,所用的引物序列见表 1。

表1 引物序列

基因名称	尔 上游序列	下游序列	片段大小/bp
GAS5	CTT GCC TGG ACC AGC TTA AT	CAA GCC GAC TCT CCA TAC	CT 122
GAPDH	CAG CCT CAA GAT CAT CAG CA	TGT GGT CAT GAG TCC TTC	CA 106

1.2.3 转染 LncRNA GAS5 干扰片段和过表达载体取对数生长期细胞,0.25% 胰酶消化,离心,将细胞制成单细胞悬液种于 6 孔板中,使第 2 天细胞密度达到 70% ~90%。将 5 μL 浓度为 20 μmol/L 的 LncRNA GAS5 干扰片段(或 4 μg 含 LncRNA GAS5 全基因的质粒)稀释于 250 μL 无血清培养基中,5 μL Lipofectamine 2000 (转染质粒需 10 μL Lipofectamine 2000)稀释于 250 μL 无血清培养基中,室温静置 5 min。将稀释好的干扰片段或质粒与 Lipofectamine 2000 混匀,室温静置 20 min。在 6 孔板中每孔加入无血清培养基 1.5 mL,将转染混合物

缓慢加入6孔板中,6 h 以后换成含 10% 胎牛血清的完全培养基。LncRNA GAS5 干扰片段序列为:5'-UCC UAA AGA GCA AGC CUA AT-3';5'-UUA GGC UUG CUC UUU AGC ATT-3'。

- 1.2.4 磺酰罗丹明 B(Sulforhodamine B, SRB)染色 法检测细胞的增殖活性 取对数生长期细胞, 0.25%胰酶消化,离心,将细胞制成单细胞悬液种于96 孔板中培养过夜,使细胞贴壁生长;对细胞进行加药处理后 24 h、48 h、72 h分别终止培养,吸出培养液并且每孔加入 200 μL 10% 三氯乙酸(TCA), 4℃,固定 50 min;用双蒸水洗涤 5 遍,室温下晾干;每孔加入 100 μL 0.4% SRB 染液,染色 30 min;弃染液,用 1%乙酸溶液轻轻洗涤 5 遍,室温下晾干;每孔加入 150 μL 10 mmol/L Trisbase 溶液,摇床上剧烈振荡 15 min,使 SRB 充分溶解,最后用酶标仪检测波长 515 nm 处的吸光度值。抑制率 = {(实验组吸光度值 阴性对照组吸光度值)/阴性对照吸光度值 | ×100%。
- 1.2.5 划痕实验检测细胞的迁移能力 胰酶消化 对数生长期细胞,离心将细胞制成单细胞悬液种于 6 孔板中,5% CO₂、37 ℃培养过夜。当细胞生长达到 80%~90%时,用 10 μL 无菌枪头相同力度在细胞板中间轻轻划出一道伤口,注意保持各组划出伤口宽度基本一致,用 PBS 洗涤 2 次,对细胞进行相应的加药处理。分别于加药培养后 0、48 h 在低倍镜下测量各组细胞任意 3 个部位的不同伤口的宽度。
- 1.2.6 Transwell 实验检测细胞的侵袭能力 胰酶消化对数生长期细胞,用无血清培养基将每组的细胞调整到相同细胞密度。按照实验分组,每组各取100 μ L 加入 Transwell 小室的上室。Transwell 小室的下室加入600 μ L 含 10% 胎牛血清的 DMEM 培养基,5% CO_2 、37 ℃ 培养箱中培养 24 h。取出 Transwell 小室,用棉签小心擦去 Transwell 小室上室的培养基以及膜上部未穿过的细胞,4%多聚甲醇固定 20 min,吉姆萨染液染色,拍照观察高倍镜下穿过的细胞数目。
- 1.3 统计学方法 采用方差分析和 q 检验及 t 检验。

2 结果

2.1 人乳腺癌细胞株 SKBR-3、MDA-MB-231 和 MCF-7 中 LncRNA GAS5 表达水平比较 qRT-PCR 结果显示: 3 株乳腺癌细胞 SKBR-3、MDA-MB-231 和 MCF-7 均可表达 LncRNA GAS5,但 LncRNA

GAS5 在 MCF-7 细胞中表达量最高,在 SKBR-3 细胞中表达量最低,各株细胞间差异均有统计学意义 (P < 0.01)(见表 2)。因此在后续的实验中选用 MCF-7 细胞做 LncRNA GAS5 的干扰实验,用 SKBR-3 细胞构建 LncRNA GAS5 高表达细胞株。

表 2 在 SKBR-3、MDA-MB-231 和 MCF-7 细胞中 LncRNA GAS5 表达水平比较(x ± s)

分组	n	LncRNA GAS5	F	P	MS _{组内}
SKBR-3 组	3	1.00 ± 0.13			
MDA-MB-231 组	3	2.62 \pm 1.20 *	33.85	< 0.01	0.654
MCF-7组	3	6.30 ± 0.71 * *			

q 检验: 与 SKBR-3 组比较 * P < 0. 05, * * P < 0. 01; 与 MDA-MB-231 组比较 \triangle \triangle P < 0. 01

2.2 si-GAS5 明显降低 LncRNA GAS5 在 MCF-7 细胞中的表达 为了进一步研究 LncRNA GAS5 在人类乳腺癌中的作用, LncRNA GAS5 特异性的 siRNA (si-GAS5) 被转入到 MCf-7 细胞中,非特异性的 siRNA 作为阴性对照(si-NC)。与 si-NC 组比较, si-GAS5 组 LncRNA GAS5 的表达量明显降低(P < 0.01)(见表 3)。

表 3 si-GAS5 对 MCF-7 细胞 LncRNA GAS5 表达的影响(x ± s)

分组	n	LncRNA GAS5	t	P
si-NC 组	3	1.00 ± 0.25	5 59	< 0.01
si-GAS5 组	3	0.19 ± 0.02	3.39	< 0.01

2.3 pcDNA-GAS5 对 SKBR-3 细胞 LncRNA GAS5 表达的影响 为了评估 LncRNA GAS5 在人乳腺癌细胞中的作用,pcDNA-GAS5 载体被转入到 SKBR-3 细胞中,以空载体组作为对照。与空载体组比较,pcDNA-GAS5 载体组 LncRNA GAS5 的表达量升高,并以 pcDNA-GAS5-2 升高较明显 (P < 0.01)(见表4)。

表 4 pcDNA-GAS5 对 SKBR-3 细胞 LncRNA GAS5 表达的 影响(x ± s)

分组	n	LncRNA GAS5	F	P	MS组内
pcDNA-NC 组	3	1.00 ± 0.12			
pcDNA-GAS5-1 组	3	1.34 ± 0.16	76.33	< 0.01	156.110
pcDNA-GAS5-2 组	3	110.33 ±21.64 [*] _△	* △		

q 检验: 与 pcDNA-NC 组比较 * * P < 0. 01; 与 pcDNA-GAS5-1 组比较 $\triangle \Delta P$ < 0. 01

2.4 LncRNA GAS5 对乳腺癌细胞增殖的影响 为探讨 LncRNA GAS5 在乳腺癌细胞中的生物学作用,

采用 SRB 实验对 LncRNA GAS5 对乳腺癌细胞增殖的作用进行了研究。结果显示,与 si-NC 转染组比较,si-GAS5 转染组明显促进乳腺癌 MCF-7 细胞的增殖(P < 0.01)(见表 5),24、48、72 h 的增殖诱导率分别为 40.3%、13.2%以及 8.8%;与 pcDNA-NC组比较,pcDNA-GAS5 组明显抑制细胞的增殖(P < 0.01)(见表 6),24、48、72 h 的增殖抑制率分别为 9.1%、15.2%、12.3%。

表 5 si-GAS5 对 MCF-7 细胞的增殖促进作用($\bar{x} \pm s$)

			OD515				
万组	n	24 h	48 h	72 h			
si-NC 组	3	1.18 ± 0.02	1.76 ± 0.01	2.22 ±0.01			
si-GAS5 组	3	1.64 ± 0.02	1.97 ± 0.01	2.49 ± 0.03			
t	_	28.17	25.72	14.79			
P	_	< 0.01	< 0.01	< 0.01			

表 6 pcDNA-GAS5 对 SKBR-3 细胞的增殖抑制作用(x±s)

分组	_	OD515				
万组	n	24 h	48 h	72 h		
pcDNA-NC 2	且 3	1.44 ± 0.02	2.20 ± 0.01	2.35 ± 0.02		
pcDNA-GAS5	组 3	1.30 ± 0.03	1.87 ± 0.01	2.13 ± 0.01		
t	_	6.73	40.42	17.04		
P	_	< 0.01	< 0.01	< 0.01		

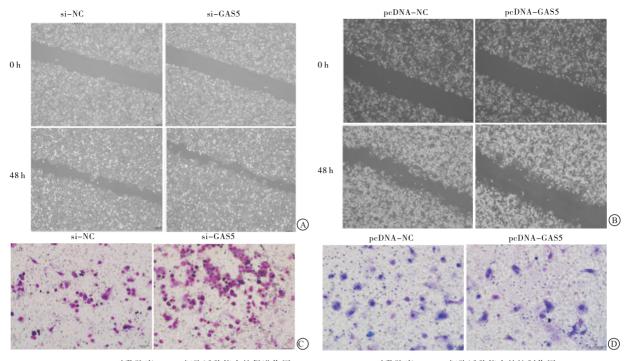

2.5 LncRNA GAS5 对乳腺癌细胞侵袭及迁移的影响 采用划痕实验和 Transwell 实验研究了 LncRNA GAS5 对乳腺癌细胞侵袭及迁移能力的调控作用。与 si-NC 转染组相比,划痕实验结果表明,si-GAS5 转染组的迁移率明显上调(见图 1A), Transwell 实验结果表明,si-GAS5 转染组侵袭的细胞数明显增多(P<0.01)(见表7,图 1B)。而在乳腺癌 SKBR-3细胞中上调 LncRNA GAS5 的表达发现,相对于pcDNA-NC 转染组,pcDNA-GAS5 转染组细胞的侵袭及迁移能力明显降低(P<0.01)(见图 1C、1D、表 8)。

表 7 si-GAS5 对 MCF-7 细胞迁移能力的影响($\bar{x} \pm s$)

_	分组	n	细胞数	t	P
	si-NC	3	52 ± 6.43	17.35	< 0.01
	si-GAS5	3	152 ± 7.64		

表 8 pcDNA-GAS5 对 SKBR-3 细胞迁移能力的影响($\bar{x} \pm s$)

分组	n	细胞数	t	P
pcDNA-NC 组 pcDNA-GAS5 组	3	32 ± 3.61 17 ± 3.51	5.16	< 0.01

A: si-GAS5对乳腺癌MCF-7细胞迁移能力的促进作用; B: peDNA-GAS5对乳腺癌SKBR-3细胞迁移能力的抑制作用; C: si-GAS5对乳腺癌MCF-7细胞侵袭能力的增强作用; D: peDNA-GAS5对乳腺癌SKBR-3细胞侵袭能力的抑制作用

图1 LncRNA GAS5对乳腺癌细胞侵袭及迁移能力的影响

3 讨论

随着人们对 LncRNA 的不断认识,越来越多的研究^[10]表明肿瘤形成的分子机制不仅与蛋白编码基因有关,而且与许多的 LncRNA 有关。虽然目前一些 LncRNAs 已经被证明在肿瘤的形成及发展过程中发挥着关键的作用,但是仅有一小部分的LncRNAs 被研究,仍有许多重要的问题需要解决。本课题主要研究 LncRNA GAS5 在肿瘤发生发展中的作用。

LncRNA,由 1q25 基因编码,这个基因座位与淋巴瘤高度相关^[11]。LncRNA GAS5 在许多肿瘤中充当着抑癌基因的角色,调控肿瘤的发生与发展。QIN等^[12]研究发现LncRNA GAS5 在肾细胞癌中的低表达与肾细胞癌的发生与发展有关,并且 LncRNA GAS5 的高表达对肾细胞癌起到抑制的作用;TU等^[13]研究发现LncRNA GAS5 在多数肝癌病人组织中低表达,并且LncRNA GAS5 的表达是肝癌的独立预后指标。还有研究^[8]发现LncRNA GAS5 在骨肉瘤中表达上调,通过间接调控 miR-21 参与骨肉瘤细胞的凋亡和自噬过程。虽然目前关于 LncRNA GAS5 的研究已有很多,但有关 LncRNA GAS5 在乳腺癌中作用的研究较少。

LncRNA GAS5 可以通过多种不同的方式对肿瘤的发生与发展进行调控。有报道[14] 称 LncRNA GAS5 可以与真核细胞转录因子 eIF4E 以及 c-myc mRNA 共同作用调控 c-myc 的翻译,进而促进胚胎的发育以及肿瘤的形成; LIU 等[15] 研究发现 LncRNA GAS5 可以与转录激活因子 YBX1 相互作用,下调 LncRNA GAS5 的表达降低 YBX1 蛋白水平,继而降低 p21 的表达,减少对细胞周期的阻断作用,促进细胞的增殖;还有大量的研究[16-18] 报道称 LncRNA GAS5 通过负向调控 CDK6 的表达进而抑制前列腺癌、膀胱癌以及胃癌等恶性肿瘤细胞的增殖。另外还有文献[10,19] 报道了 LncRNA GAS5 与肿瘤的增殖、侵袭及转移之间的关系,但在乳腺癌中LncRNA GAS5 与细胞侵袭及转移的关系仍未见报道。

为了进一步阐明 LncRNA GAS5 在乳腺癌发展中的作用机制,本研究比较了 3 株乳腺癌细胞株中 LncRNA GAS5 的表达量。结果发现 LncRNA GAS5 在 MCF-7 细胞中表达量最高,在 SKBR-3 细胞中表达量最低,因此在后续的实验中用 MCF-7 细胞做 LncRNA GAS5 干扰试验,用 SKBR-3 细胞过表达 LncRNA GAS5 来进行研究。在 MCf-7 细胞中下调 LncRNA GAS5 的表达,可以明显地促进乳腺癌细胞的增殖,增加乳腺癌细胞的侵袭及迁移能力。相反,

在 SKBR-3 细胞中上调 LncRNA GAS5 的表达,可以抑制乳腺癌细胞的增殖,降低乳腺癌细胞的侵袭及迁移能力,表明 LncRNA GAS5 可以影响乳腺癌细胞发生及发展过程。这些结果表明 LncRNA GAS5 在乳腺癌细胞中可能是作为一个肿瘤抑制基因,它的缺乏或者表达降低都可能导致乳腺癌的发生。

综上,下调 LncRNA GAS5 的表达在乳腺癌细胞的增殖、侵袭及迁移中发挥了关键的作用。LncRNA GAS5 是涉及到乳腺癌发展的一个新型的分子,有可能成为乳腺癌治疗的潜在靶点。

[参考文献]

- [1] SIEGEL R, MA J, ZOU Z, et al. Cancer statistics, 2014 [J]. CA Cancer J Clin, 2014, 64(9):29.
- [2] GONZALEZANGULO AM, MORALESVASQUEZ F, HORTOBAGYI GN. Overview of resistance systemic therapy in patients with breast cancer [J]. Adv Exp Med Biol, 2007, 608;1.
- [3] PONTING CP, OLIVER PL, REIK W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4):629.
- [4] SUN YW, CHEN YF, LI J, et al. A novel long non-coding RNA ENST00000480739 sup-Presses tumour cell invasion by regulating OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma [J]. Br J cancer, 2014, 111 (31):2131.
- [5] PICKARD MR, MOURTADA-MAARABOUNI M, WILLIAMS GT. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines[J]. Biochim Biophys Acta, 2013, 1832(10):1613.
- [6] QIAO HP, GAO WS, HUO JX, et al. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma[J]. Asian Pac J Cancer Prev, 2013, 14(2):1077.
- [7] MOURTADA-MAARABOUNI M, PICKARD MR, HEDGE VL, et al. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer [J]. Oncogene, 2009, 28 (2): 195.
- [8] SONG JS, AHN CY, CHUN CH, et al. A Long Non-Coding RNA, GAS5, Plays a Critical Role in the Regulation of miR-21 During Osteoarthritis [J]. Inc J Orthop Res, 2014, 32(12):1628.
- [9] ZHAO XH, WANG P, LIU J, et al. Gas5 exerts tumor-suppressive

- functions in human glioma cells by targeting miR-222 [J]. Molecular Therapy, 2015, 23(12): 1899.
- [10] MERCER TR, DINGER ME, MATTICK JS. Long non-coding RNAs:insights into functions[J]. Nat Rev Genet, 2009, 10(3):
- [11] NAKAMURA Y, TAKAHASHI N, KAKEGAWA E, et al. The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma [J]. Cancer Genet Cytogenet,2008,182(2):144.
- [12] QIN R, CHEN Z, DING Y, et al. Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis[J]. Neoplasma, 2012, 60(5):486.
- [13] TU ZQ, LI RJ, MEI JZ, et al. Down-regulation of long non-coding RNA GAS5 is associated with the prognosis of hepatocellular carcinoma [J]. Int J Clin Exp Pathol, 2014, 7(7);4303.
- [14] HU GZ, LOU ZK, GUPTA M. The Long Non-Coding RNA GAS5 Cooperates with the Eukaryotic Translation Initiation Factor 4E to Regulate c-Myc Translation [J]. PLoS ONE, 2014, 9 (9): e107016.
- [15] LIU Y, ZHAO J, ZHANG W, et al. lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer[J]. Sci Rep, 2015(5):10159.
- [16] LU XX, FANG Y, WANG ZT, et al. Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6 [J]. Cell Tissue Res, 2013, 354(3):891.
- [17] LIU ZL, WANG W, JIANG JT, et al. Downregulation of GAS5 Promotes Bladder Cancer Cell Proliferation, Partly by Regulating CDK6[J]. PLoS ONE, 2014,8(9):73991.
- [18] GUO XQ, DENG KY, WANG H, et al. GAS5 inhibits gastric cancer cell proliferation partly by modulating CDK6 [J]. Oncol Res Treat, 2015, 38 (7/8); 362.
- [19] CAO SH, LIU WL, LI F, et al. Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer[J]. J Clin Exp Pathol, 2014, 7 (10):6776.

(本文编辑 姚仁斌)

(上接第848页)

- [13] 曹旭,张临洪. 溴氰菊酯及 6- 羟基多巴胺对 PC12 细胞 Nrt2/ARE 通路的影响[J]. 现代预防医学,2013,40(17);3253.
- [14] AGARWAL A, NICK HS. Renal response to tissue injury: lessons from heme oxygenase-1 gene ablation and expression [J]. J Am Soc Nephrol, 2000, 11 (5): 965.
- [15] CAI Z, LOU Q, WANG F. N-acetylcysteine protects against liver injure induced by carbon tetrachloride via activation of the Nrf2/ HO-1 pathway[J]. Int J Clin Exp Pathol, 2015,8(7):8655.
- [16] MARTIN D, ROJO AI, SALINAS M, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/ Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol [J]. J Biol Chem, 2004, 279 (10):8919.
- [17] SHAO JL, ZHOU YY, CHEN HM, et al. Sevoflurane induces neuron HO-1 mRNA expression via P70S6K/Nrf2 kinase signal pathways[J]. Chin Pharmacol Bull, 2009, 25(2):209.

(本文编辑 刘璐)