• 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国高校优秀期刊
  • 安徽省优秀科技期刊
Volume 49 Issue 1
Jan.  2024
Article Contents
Turn off MathJax

Citation:

Differential expression profile of circular RNA in brain tissue of APP/PS1 transgenic mice and its related ceRNA construction

  • Corresponding author: ZHOU Huadong, zhouhuad@163.com
  • Received Date: 2023-07-17
    Accepted Date: 2023-11-19
  • ObjectiveTo explore the differential expression profile of circular RNA (circRNA) in brain tissue of Alzheimer's disease (AD) model mouse, to construct circRNA-miRNA-mRNA regulatory network, and to clarify the regulatory mechanism of circRNA in the occurrence of AD.MethodsThe differential expression of circRNA in the brain of APP/PS1 transgenic AD model mice was analyzed by gene microarray.Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed on the differential circRNAs.Real-time quantitative polymerase chain reaction was used to verify the randomly selected 5 differentially expressed circRNAs, and circRNA-miRNA-mRNA was constructed to perform AD target gene function prediction analysis.ResultsA total of 52 differentially expressed circRNAs were screened, of which 28 were up-regulated and 24 were down-regulated.The enrichment analysis results of GO and KEGG showed that the differentially expressed parental genes of circRNAs were mainly involved in nervous system development, protein binding, RNA transport, signaling pathways regulating stem cell pluripotency, and Hippo signaling pathways.Biological information was used to analyze the successfully constructed competing endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA, indicating that the enriched functions of these target genes might play a role through small molecule binding, plasma membrane, cAMP signaling pathway, and Rap1 signaling pathway.ConclusionsThere are various differentially expressed circRNAs in the brain of AD model mice, and these differentially expressed genes may be involved in the molecular regulation of AD occurrence through the circRNA-miRNA-mRNA regulatory network.
  • 加载中
  • [1] PRINCE M, BRYCE R, ALBANESE E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimers Dement, 2013, 9(1): 63. doi: 10.1016/j.jalz.2012.11.007
    [2] LONG JM, HOLTZMAN DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312. doi: 10.1016/j.cell.2019.09.001
    [3] KOS A, DIJKEMA R, ARNBERG AC, et al. The hepatitis δ virus possesses a circular RNA[J]. Nature, 1986, 323(6088): 558. doi: 10.1038/323558a0
    [4] SONG C, ZHANG Y, HUANG W, et al. Circular RNA cwc27 contributes to Alzheimer's disease pathogenesis by repressing Pur-α activity[J]. Cell Death Differ, 2022, 29(2): 393. doi: 10.1038/s41418-021-00865-1
    [5] HUANG JL, QIN MC, ZHOU Y, et al. Comprehensive analysis of differentially expressed profiles of Alzheimer's disease associated circularRNAs in an Alzheimer's disease mouse model[J]. Aging, 2018, 10(2): 253. doi: 10.18632/aging.101387
    [6] DOXTATER K, TRIPATHI MK, KHAN MM. Recent advances on the role of long non-coding RNAs in Alzheimer's disease[J]. Neural Regen Res, 2020, 15(12): 2253. doi: 10.4103/1673-5374.284990
    [7] LAURETTI E, DABROWSKI K, PRATICÒ D. The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: pathways, mechanisms and translational opportunities[J]. Ageing Res Rev, 2021, 71: 101425. doi: 10.1016/j.arr.2021.101425
    [8] XU Y, LENG K, YAO Y, et al. A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers[J]. Hepatology, 2021, 73(4): 1419. doi: 10.1002/hep.31493
    [9] 张兵, 王孝玉, 朱亚辉. CircPTPRA靶向miR-140-5p调控类风湿关节炎滑膜成纤维细胞增殖及迁移的机制研究[J]. 蚌埠医学院学报, 2023, 48(4): 436.
    [10] MA N, PAN J, YE X, et al. Whole-transcriptome analysis of app/ps1 mouse brain and identification of circRNA-miRNA-mRNA networks to investigate AD pathogenesis[J]. Mol Ther Nucleic Acids, 2019, 18: 1049. doi: 10.1016/j.omtn.2019.10.030
    [11] LUKIW WJ. Circular RNA (circRNA) in Alzheimer's disease (AD)[J]. Front Genet, 2013, 4: 307.
    [12] SHI Z, CHEN T, YAO Q, et al. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-κB-dependent manner[J]. Febs J, 2017, 284(7): 1096. doi: 10.1111/febs.14045
    [13] WU L, DU Q, WU C. CircLPAR1/miR-212-3p/ZNF217 feedback loop promotes amyloid β-induced neuronal injury in Alzheimer's disease[J]. Brain Res, 2021, 1770: 147622. doi: 10.1016/j.brainres.2021.147622
    [14] CHEN DL, GUO YR, QI LK, et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding dynamin-1 and adaptor protein 2 B1 in AD-like mice[J]. Aging, 2019, 11(24): 12002. doi: 10.18632/aging.102529
    [15] LI Y, HAN X, FAN H, et al. Circular RNA axl increases neuron injury and inflammation through targeting microrna-328 mediated BACE1 in Alzheimer's disease[J]. Neurosci Lett, 2022, 776: 136531. doi: 10.1016/j.neulet.2022.136531
    [16] MA S, MENG Z, CHEN R, et al. The hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577. doi: 10.1146/annurev-biochem-013118-111829
    [17] IRWIN M, TARE M, SINGH A, et al. A positive feedback loop of hippo- and c-jun-amino-terminal kinase signaling pathways regulates amyloid-β-mediated neurodegeneration[J]. Front Cell Dev Biol, 2020, 8: 117. doi: 10.3389/fcell.2020.00117
    [18] ZHANG Y, YU F, BAO S, et al. Systematic characterization of circular RNA-associated ceRNA network identified novel circRNA biomarkers in Alzheimer's disease[J]. Front Bioeng Biotechnol, 2019, 7: 222. doi: 10.3389/fbioe.2019.00222
    [19] LISMAN J, YASUDA R, RAGHAVACHARI S. Mechanisms of CaMKⅡ action in long-term potentiation[J]. Nat Rev Neurosci, 2012, 13(3): 169. doi: 10.1038/nrn3192
    [20] WANG YJ, CHEN GH, HU XY, et al. The expression of calcium/calmodulin-dependent protein kinase Ⅱ-α in the hippocampus of patients with Alzheimer's disease and its links with AD-related pathology[J]. Brain Res, 2005, 1031(1): 101. doi: 10.1016/j.brainres.2004.10.061
    [21] LI L, LAI M, COLE S, et al. Neurogranin stimulates Ca2+/calmodulin-dependent kinase Ⅱ by suppressing calcineurin activity at specific calcium spike frequencies[J]. PLoS Comput Biol, 2020, 16(2): e1006991. doi: 10.1371/journal.pcbi.1006991
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7) / Tables(3)

Article views(2268) PDF downloads(19) Cited by()

Related
Proportional views

Differential expression profile of circular RNA in brain tissue of APP/PS1 transgenic mice and its related ceRNA construction

    Corresponding author: ZHOU Huadong, zhouhuad@163.com
  • 1. Department of Neurology, The First Affiliated Hospital of Bengbu Medical University, Bengbu Anhui 233004
  • 2. Department of Neurology, Army Medical Center of PLA, Chongqing 400020, China

Abstract: ObjectiveTo explore the differential expression profile of circular RNA (circRNA) in brain tissue of Alzheimer's disease (AD) model mouse, to construct circRNA-miRNA-mRNA regulatory network, and to clarify the regulatory mechanism of circRNA in the occurrence of AD.MethodsThe differential expression of circRNA in the brain of APP/PS1 transgenic AD model mice was analyzed by gene microarray.Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed on the differential circRNAs.Real-time quantitative polymerase chain reaction was used to verify the randomly selected 5 differentially expressed circRNAs, and circRNA-miRNA-mRNA was constructed to perform AD target gene function prediction analysis.ResultsA total of 52 differentially expressed circRNAs were screened, of which 28 were up-regulated and 24 were down-regulated.The enrichment analysis results of GO and KEGG showed that the differentially expressed parental genes of circRNAs were mainly involved in nervous system development, protein binding, RNA transport, signaling pathways regulating stem cell pluripotency, and Hippo signaling pathways.Biological information was used to analyze the successfully constructed competing endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA, indicating that the enriched functions of these target genes might play a role through small molecule binding, plasma membrane, cAMP signaling pathway, and Rap1 signaling pathway.ConclusionsThere are various differentially expressed circRNAs in the brain of AD model mice, and these differentially expressed genes may be involved in the molecular regulation of AD occurrence through the circRNA-miRNA-mRNA regulatory network.

  • 阿尔茨海默病(Alzheimer′s disease,AD)是老年人痴呆的最常见原因。它是一种中枢神经系统退行性疾病,主要病理特征为β-淀粉样蛋白(Aβ)沉积和高度磷酸化的tau蛋白形成的神经纤维缠结[1-2]。由于该疾病的复杂性,其病理生理机制尚不完全清楚。尽管全球AD病人的数量在不断增加,但目前尚无针对AD的有效治疗方法。近年来人们发现非编码RNA可以通过多种不同机制控制基因表达程序来调节细胞功能。其中环状RNA (circRNA)是一类具有完整闭环结构的非编码RNA,在哺乳动物的神经元中非常丰富[3]。研究[4-5]表明,一些circRNA在神经炎症、氧化应激和自噬以及Aβ的产生和降解中发挥重要的调节作用。因此,进一步研究circRNA在基因调控中的作用有利于增进对AD发病机制的研究,并通过寻找潜在的治疗靶点为AD诊断和治疗提供新策略。本研究使用APP/PS1转基因小鼠模型,采用基因芯片技术筛选出差异表达的circRNA,预测并构建circRNA-miRNA-mRNA调控网络,探讨差异表达circRNA在AD发病机制中的潜在作用。

1.   材料与方法
  • 选取3只10月龄APP/PS1转基因雄性小鼠,作为AD组,同窝10月龄C57BL小鼠3只作为空白对照组。实验动物均购自南京君科生物工程有限公司,动物许可证号:SCXK(苏)2020-0009。通过颈椎脱位法分别处死2组小鼠,将获得的脑组织保存在液氮中备用。实验过程中遵循实验动物伦理规定。

  • NanoDrop ND-1000型分光光度仪购自美国NanoDrop公司,Agilent DNA微阵列扫描仪、Agilent Feature Extraction v11.0.1.1软件和GeiieSpring GX v12.1软件购自美国Agilent公司,9700型PCR仪购自美国Applied Biosystems公司。Arraystar小鼠circRNA V4.0芯片、Arraystar表达谱芯片配套试剂盒及2×PCR master mix试剂盒购自美国Arraystar公司,Trizol试剂和SuperScriptTMⅢ RT master mix试剂盒购自美国Invitrogen公司,RNeasy Mini Kit试剂盒购自美国Qiagen公司。

  • 用RNA提取试剂盒Trizol从小鼠脑组织中提取总RNA。采用ND-1000紫外分光光度计测定RNA的浓度并评估纯度。RNA完整性通过标准变性凝胶电泳进行评估。使用Arraystar小鼠circRNA V4.0芯片和Arraystar表达谱芯片配套试剂盒进行基因芯片杂交,并应用Agilent Feature Extraction软件获得芯片信号强度图和原始数据,对杂交图像进行差异数据分析。

  • 在差异表达的circRNA中随机选择5个circRNA进行qRT-PCR验证。按照SuperscriptTMⅢ RT转录试剂盒说明书步骤,反转录为互补DNA (complementary DNA,cDNA)。反转录条件为:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,共40个循环。引物由上海数谱生物科技有限公司合成,各引物序列见表 1。将所得cDNA按照2×PCR master mix试剂盒说明进行操作,反应条件为:95 ℃ 10 min;95 ℃ 10 s,60 ℃ 60 s,40个循环。以GAPDH作为内参,由反应曲线得出阈值循环参数,应用QuantStudioTM 5 real-time PCR仪分析荧光阈值(cycle threshold,Ct)。采用2-△△Ct法计算相对表达量。

    目的基因 引物序列 长度/bp
    GAPDH F: 5′CAC TGA GCA AGA GAG GCC CTA T3′
    R: 5′GCA GCG AAC TTT ATT GAT GGT ATT 3′
    144
    mmu_circRNA_32182 F: 5′GTC TTT CAA CTC CTA TCG CAC TG3′
    R: 5′CTC GTC GGG CTG GTC TAC AT3′
    65
    mmu_circRNA_29978 F: 5′GAG GAG GTG GTC CGA GTT G3′
    R: 5′ACG GTG TGC CAG TGA AGA TG3′
    119
    mmu_circRNA_41461 F: 5′ATG GAC TGG TTC ATT GCT GT3′
    R: 5′CCA ACT TGA TCT TGA CGC TT3′
    149
    mmu_circRNA_24012 F: 5′AAC GAT ATT GAT GAG GAG ACC A3′
    R: 5′TGG TGA TTT TCA CAT CTG GAG 3′
    124
    mmu_circRNA_35922 F: 5′CAA TGG ACA TCA CAG GCT ACT C3′
    R: 5′GCA GGG TTA GCA GAA GAA GG3′
    83
    mmu_circRNA_40341 F: 5′GTC GCT CAG AAG ACA GTG GA3′
    R: 5′CCT TAG TTT TGG AAC CTT GC3′
    93
  • 将差异表达的circRNA母源基因通过GO数据库(http://www.geneontology.org)进行GO功能富集分析,通过KEGG数据库(http://www.genome.jp/kegg)对差异表达的基因进行KEGG通路富集分析。

  • 差异表达的circRNA通过错误发现率(FDR)≤0.001及差异倍数筛选,利用TargetScan数据库和miRanda的miRNA靶标预测软件预测circRNA-miRNA和miRNA-mRNA之间的结合关系,应用Cytoscape3.4.0构建circRNA-miRNA-mRNA调控网络,对circRNA竞争性网络靶向mRNA进行GO和KEGG通路富集分析。

  • 采用t检验。

2.   结果
  • AD组与对照组比较,通过circRNA芯片鉴定,定义差异倍数>1.5且P < 0.05的circRNA具有差异表达,共筛选出52个差异有统计学意义的circRNA,其中28个上调,24个下调。根据差异表达的circRNA绘制热图(见图 1)和火山图(见图 2),差异表达前10位的circRNA基本信息见表 2

    circRNA名称 差异倍数 P 亲本基因 表达变化
    mmu_circRNA_33199 2.463 161 < 0.05 Olfm1 上调
    mmu_circRNA_24012 2.134 654 < 0.05 Trim37 上调
    mmu_circRNA_41461 2.009 832 < 0.05 Gabra5 上调
    mmu_circRNA_40341 1.986 496 < 0.05 Snca 上调
    mmu_circRNA_30828 1.883 003 < 0.05 Dlgap1 上调
    mmu_circRNA_44786 1.840 855 < 0.05 Rasgrf1 上调
    mmu_circRNA_32182 1.817 803 < 0.05 Sptbn2 上调
    mmu_circRNA_29008 1.793 764 < 0.05 Nell2 上调
    mmu_circRNA_000787 1.778 503 < 0.05 Tns3 上调
    mmu_circRNA_41462 1.761 532 < 0.05 Gabra5 上调
    mmu_circRNA_012503 2.239 039 < 0.05 Pbx3 下调
    mmu_circRNA_36555 2.178 456 < 0.05 Gm11892 下调
    mmu_circRNA_25826 2.173 975 < 0.05 Meg3 下调
    mmu_circRNA_35922 1.868 88 < 0.05 Syt6 下调
    mmu_circRNA_44628 1.850 253 < 0.05 Unc13c 下调
    mmu_circRNA_31872 1.844 997 < 0.05 Gnal 下调
    mmu_circRNA_29357 1.788 899 < 0.01 Hic2 下调
    mmu_circRNA_21495 1.781 826 < 0.05 Rab3gap2 下调
    mmu_circRNA_28035 1.715 291 < 0.05 Uggt2 下调
    mmu_circRNA_29978 1.691 906 < 0.05 App 下调
  • 芯片结果存在假阳性,为保证研究可靠性,采用qRT-PCR验证基因芯片的结果。结果显示,选取的5个circRNA中,3个上调(mmu_circRNA_24012,mmu_circRNA_41461,mmu_circRNA_40341),2个下调(mmu_circRNA_29978,mmu_circRNA_35922)。除了mmu_circRNA_41461有上调趋势但差异无统计学意义,其余4个circRNA变化趋势与基因芯片结果一致,差异有统计学意义(P < 0.05~P < 0.01)(见表 3)。

    分组 n mmu_circRNA_35922 mmu_circRNA_24012 mmu_circRNA_40341 mmu_circRNA_29978 mmu_circRNA_41461
    AD组 3 4.56±2.11 1.22±0.25 0.73±0.14 0.66±0.14 0.91±0.31
    对照组 3 1.00±0.05 1.02±0.13 1.00±0.07 1.00±0.13 1.01±0.11
    t 5.86 3.12 3.88 4.73 0.32
    P < 0.01 < 0.05 < 0.05 < 0.01 >0.05
  • 对差异表达circRNA的母源基因进行GO功能富集分析,发现上调的差异表达circRNA主要富集的生物过程为定位和神经系统发育,细胞组成为细胞投射和神经元投射,分子功能为蛋白质结合和Rho GTPase蛋白结合;下调的差异表达circRNA主要富集的生物过程为细胞成分的组装和突触组织,细胞组成为质膜外侧的锚定成分和突触膜,分子功能为结合和蛋白质结合(见图 3A3B)。KEGG通路富集分析结果提示,上调的差异表达的circRNA的亲本基因主要富集于调控干细胞多能性的信号通路和Hippo信号通路等;下调的差异表达的circRNA的亲本基因主要富集于RNA运输,肌醇磷酸盐代谢和催产素信号通路等(见图 4)。

  • 为了进一步阐明差异circRNA的生物学功能,使用miRanda和TargetScan数据库预测得到具有结合位点的circRNA-miRNA和miRNA-mRNA关系对,构建circRNA-miRNA-mRNA三元转录网(见图 5)。对ceRNA网络mRNA进行GO功能富集及KEGG通路富集分析发现,GO富集的分子功能主要为蛋白质结合、催化活性、小分子结合;细胞成分主要为浆膜、浆膜约束的细胞投射、神经元投射;生物过程主要为对运输的正向调节、定位、对定位的调节。根据KEGG通路富集分析提示其主要富集于cAMP信号通路、Rap1信号传导途径、C型凝集素受体信号通路、HIF-1信号传导途径等信号通路(见图 67)。

3.   讨论
  • AD是一种与年龄相关的破坏性神经退行性疾病,主要症状包括记忆力减退和学习能力下降。AD的发生发展涉及多种因素,其病理机制尚不完全清楚。作为非编码RNA,circRNA虽然不能直接编码翻译蛋白质,但是能够充当“miRNA海绵”,参与转录后调控。circRNA通过与miRNA反应原件结合,降低miRNA与下游靶向mRNA的结合,从而减少miRNA介导的基因抑制表达,影响靶基因的表达,即ceRNA调控机制[6-7]。许多研究已经证明circRNA可以参与多种疾病的病理过程,例如,XU等[8]发现circCCAC1通过靶向YY1的miR-514a-5p促进胆管癌肿瘤发生;张兵等[9]报道可通过干扰circPTPRA来上调miR-140-5p的表达而抑制类风湿关节炎滑膜成纤维细胞增殖和迁移。

    circRNA是一类在神经系统中高度表达的非编码RNA,研究表明circRNA在神经元发育和衰老过程中是动态调节的,它们在突触水平上富集,并在突触可塑性中发挥重要作用,突触可塑性是学习和记忆的基础[10],可能参与了AD和其他神经退行性疾病的发生发展。例如,散发型AD病人海马CA1区circRNA CDR1as/ciRS-7的表达被下调[11]。由于降低了ciRS-7“海绵”效应,miR-7活性增加,可以下调AD相关靶标,包括泛素蛋白连接酶UBE2A,这是AD中清除淀粉样肽所必需的蛋白。此外,在SH-SY5Y细胞中,最近发现ciRS-7以NF-κB依赖性方式促进APP和BACE1的降解[12]。WU等[13]报道circ-LPAR1在AD病人中高表达,通过靶向CHP-212和IMR-32细胞中的miR-212-3p,提高Aβ刺激的神经元凋亡、炎症和氧化应激。CHEN等[14]报道circ-NF1-419通过结合AD样小鼠的Adaptor protein 2b1和Dynamin-1来调节老年痴呆。LI等[15]报道circ-AXL可促进AD细胞模型神经元损伤和炎症反应,通过靶向miR-328介导BACE1加速AD的进展。

    为了探讨circRNA在AD中的潜在作用,本研究利用circRNA的基因芯片分析AD小鼠模型存在的差异表达circRNA。结果表明,与对照组相比,AD小鼠模型脑组织中共筛查出52个差异表达的circRNA,其中表达上调有28个,表达下调有24个。我们对差异表达circRNA的母源基因进行了GO和KEGG分析。GO功能富集分析发现上调的差异表达circRNA主要富集的生物过程为定位和神经系统发育,细胞组成为细胞投射和神经元投射,分子功能为蛋白质结合和Rho GTPase蛋白结合;下调的差异表达circRNA主要富集的生物过程为细胞成分的组装和突触组织;细胞组成为质膜外侧的锚定成分和突出膜;分子功能为结合和蛋白质结合。在KEGG分析中发现差异表达的circRNA的亲本基因主要富集于调控干细胞多能性的信号通路、Hippo信号通路、RNA运输磷脂酰肌醇信号传导通路等。Hippo信号通路在细胞功能中发挥着重要作用。Hippo信号传导的激活诱导细胞死亡,而Hippo信号传导的失活则引发细胞增殖[16]。最近的研究[17]表明,Hippo途径在AD的发病机制中起着重要作用,Hippo信号的过度激活可以导致Aβ42毒性增强, 并影响Aβ42介导的神经退行性,而下调Hippo信号通路可以挽救Aβ42介导的神经退行性。提示差异circRNA可能参与AD的多个调控机制。

    目前,circRNA-miRNA-mRNA竞争系统已被发现是AD中一个重要的表观遗传调控环[18]。为此,本研究通过miRanda等数据库预测与差异circRNA存在结合位点的miRNA和miRNA-mRNA关系对构建ceRNA调控网络。本研究中预测的mmu_circRNA_ 35922是通过靶向miR-346-3p调节钙/钙调蛋白依赖性蛋白激酶Ⅱ a(CaMKⅡa)。CaMKⅡa是一种多功能蛋白激酶,是钙信号传导的关键参与者,在记忆处理,学习和神经可塑性中起着至关重要的作用[19]。CaMKⅡa失调也是AD发展的关键和早期信号。淀粉样蛋白前体蛋白和tau蛋白可被过度活跃的CaMKⅡa磷酸化,导致Aβ和神经原纤维缠结形成[20-21]。这些结果表明差异表达的circRNA相关ceRNA网络可以为AD提供新的见解,从而为该疾病提出新的治疗方法。

    综上所述,本研究筛选出AD小鼠脑组织中多种差异表达的circRNA,如表达上调的mmu_circRNA_24012、mmu_circRNA_40341,表达下调的mmu_circRNA_29978、mmu_circRNA_35922,这些差异基因可能通过circRNA-miRNA-mRNA调节网络参与AD发生的分子调控。本研究有望为AD的诊疗及发生发展提供新的研究靶点和方向。而关于circRNA如何通过ceRNA网络具体参与AD的发病机制尚不清楚,后续可通过细胞和动物实验作更深入的研究。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return